Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:20038188rdf:typepubmed:Citationlld:pubmed
pubmed-article:20038188lifeskim:mentionsumls-concept:C0220908lld:lifeskim
pubmed-article:20038188lifeskim:mentionsumls-concept:C1704675lld:lifeskim
pubmed-article:20038188lifeskim:mentionsumls-concept:C0016126lld:lifeskim
pubmed-article:20038188lifeskim:mentionsumls-concept:C0376284lld:lifeskim
pubmed-article:20038188pubmed:issue1lld:pubmed
pubmed-article:20038188pubmed:dateCreated2010-1-25lld:pubmed
pubmed-article:20038188pubmed:abstractTextIn this study, we developed a new pharmacophore-based interaction fingerprint (Pharm-IF) and examined its usefulness for in silico screening using machine learning techniques such as support vector machine (SVM) and random forest (RF) instead of similarity-based ranking. Using the docking results of PKA, SRC, cathepsin K, carbonic anhydrase II, and HIV-1 protease, the screening efficiencies of the Pharm-IF models were compared to GLIDE score and the residue-based IF (PLIF) models. The combination of SVM and Pharm-IF demonstrated a higher enrichment factor at 10% (5.7 on average) than those of GLIDE score (4.2) and PLIF (4.3). In terms of the size of the training sets, learning more than five crystal structures enabled the machine learning models to stably achieve better efficiencies than GLIDE score. We also employed the docking poses of known active compounds, in addition to the crystal structures, as positive samples of training sets. The enrichment factors of the RF models at 10% using the docking poses for SRC and cathepsin K showed significantly higher values (6.5 and 6.3) than those using only the crystal structures (3.9 and 3.2), respectively.lld:pubmed
pubmed-article:20038188pubmed:languageenglld:pubmed
pubmed-article:20038188pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20038188pubmed:citationSubsetIMlld:pubmed
pubmed-article:20038188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20038188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:20038188pubmed:statusMEDLINElld:pubmed
pubmed-article:20038188pubmed:monthJanlld:pubmed
pubmed-article:20038188pubmed:issn1549-960Xlld:pubmed
pubmed-article:20038188pubmed:authorpubmed-author:YokoyamaShige...lld:pubmed
pubmed-article:20038188pubmed:authorpubmed-author:SatoTomohiroTlld:pubmed
pubmed-article:20038188pubmed:authorpubmed-author:HonmaTerukiTlld:pubmed
pubmed-article:20038188pubmed:issnTypeElectroniclld:pubmed
pubmed-article:20038188pubmed:volume50lld:pubmed
pubmed-article:20038188pubmed:ownerNLMlld:pubmed
pubmed-article:20038188pubmed:authorsCompleteYlld:pubmed
pubmed-article:20038188pubmed:pagination170-85lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:meshHeadingpubmed-meshheading:20038188...lld:pubmed
pubmed-article:20038188pubmed:year2010lld:pubmed
pubmed-article:20038188pubmed:articleTitleCombining machine learning and pharmacophore-based interaction fingerprint for in silico screening.lld:pubmed
pubmed-article:20038188pubmed:affiliationDepartment of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.lld:pubmed
pubmed-article:20038188pubmed:publicationTypeJournal Articlelld:pubmed