Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19943666rdf:typepubmed:Citationlld:pubmed
pubmed-article:19943666lifeskim:mentionsumls-concept:C0035647lld:lifeskim
pubmed-article:19943666lifeskim:mentionsumls-concept:C0332161lld:lifeskim
pubmed-article:19943666lifeskim:mentionsumls-concept:C0001275lld:lifeskim
pubmed-article:19943666lifeskim:mentionsumls-concept:C0332256lld:lifeskim
pubmed-article:19943666lifeskim:mentionsumls-concept:C0009847lld:lifeskim
pubmed-article:19943666lifeskim:mentionsumls-concept:C2827365lld:lifeskim
pubmed-article:19943666lifeskim:mentionsumls-concept:C0772162lld:lifeskim
pubmed-article:19943666pubmed:issue23lld:pubmed
pubmed-article:19943666pubmed:dateCreated2009-11-30lld:pubmed
pubmed-article:19943666pubmed:abstractTextBreakthrough across high-density polyethylene (HDPE) was measured for 2,3',4',5-tetrachlorobiphenyl and a higher-solubility surrogate, 1,2,4-trichlorobenzene. Addition of powdered activated carbon (0.14 g carbon/cm(3) membrane) reduced pseudo-steady-state flux through thin HDPE membranes by approximately 60%. Breakthrough curves for activated carbon-containing membranes were best described by a model in which sorption to the carbon was limited by the rate of diffusion from the bulk membrane to the carbon particle surfaces. Field-scale estimates based on this model show a substantial (over 10 orders of magnitude) reduction in flux for the activated carbon-containing HDPE compared with pure HDPE. The flux of 2,3',4',5-tetrachlorobiphenyl through a composite membrane with thin layers of poly(vinyl alcohol) (PVA) with 0.05 g carbon/cm(3) and pure HDPE was 69% lower than expected for a similar layered membrane without the sorptive scavenger. This flux reduction was achieved with less than a third of the carbon used in the HDPE case, an improvement that is likely the result of better solute uptake in the hydrophilic PVA layer.lld:pubmed
pubmed-article:19943666pubmed:languageenglld:pubmed
pubmed-article:19943666pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:citationSubsetIMlld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19943666pubmed:statusMEDLINElld:pubmed
pubmed-article:19943666pubmed:monthDeclld:pubmed
pubmed-article:19943666pubmed:issn0013-936Xlld:pubmed
pubmed-article:19943666pubmed:authorpubmed-author:ArnoldWilliam...lld:pubmed
pubmed-article:19943666pubmed:authorpubmed-author:CusslerEdward...lld:pubmed
pubmed-article:19943666pubmed:authorpubmed-author:NovakPaige...lld:pubmed
pubmed-article:19943666pubmed:authorpubmed-author:SurdoErin MEMlld:pubmed
pubmed-article:19943666pubmed:issnTypePrintlld:pubmed
pubmed-article:19943666pubmed:day1lld:pubmed
pubmed-article:19943666pubmed:volume43lld:pubmed
pubmed-article:19943666pubmed:ownerNLMlld:pubmed
pubmed-article:19943666pubmed:authorsCompleteYlld:pubmed
pubmed-article:19943666pubmed:pagination8916-22lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:meshHeadingpubmed-meshheading:19943666...lld:pubmed
pubmed-article:19943666pubmed:year2009lld:pubmed
pubmed-article:19943666pubmed:articleTitleGeomembranes containing powdered activated carbon have the potential to improve containment of chlorinated aromatic contaminants.lld:pubmed
pubmed-article:19943666pubmed:affiliationDepartment of Civil Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA.lld:pubmed
pubmed-article:19943666pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19943666pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:19943666pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed