Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19775892rdf:typepubmed:Citationlld:pubmed
pubmed-article:19775892lifeskim:mentionsumls-concept:C1522662lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C1704675lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C0546881lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C0728733lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C0234402lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C0234621lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C0205360lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C0185023lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C1880177lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C0441463lld:lifeskim
pubmed-article:19775892lifeskim:mentionsumls-concept:C1521840lld:lifeskim
pubmed-article:19775892pubmed:issue1lld:pubmed
pubmed-article:19775892pubmed:dateCreated2010-2-3lld:pubmed
pubmed-article:19775892pubmed:abstractTextStationary visual information has a stabilizing effect on posture, whereas moving visual information is destabilizing. We compared the influence of a stationary or moving fixation point to the influence of stationary or moving large-field stimulation, as well as the interaction between a fixation point and a large-field stimulus. We recorded body sway in 20 healthy subjects who were fixating a stationary or oscillating dot (vertical or horizontal motion, 1/3 Hz, +/-12 degrees amplitude, distance 96 cm). In addition, a large-field random dot pattern (extension: approximately 80 x 70 degrees) was stationary, moving or absent. Visual fixation of a stationary dot in darkness did not reduce antero-posterior (AP) sway compared to the situation in total darkness, but slightly reduced lateral sway at frequencies below 0.5 Hz. In contrast, fixating a stationary dot on a stationary large-field pattern reduced both AP and lateral body sway at all frequencies (0.1-2 Hz). Ocular tracking of the oscillating dot caused a peak in body sway at 1/3 Hz, i.e. the stimulus frequency, but there was no influence of large-field stimulus at this frequency. A stationary large-field pattern, however, reduced AP and lateral sway at frequencies between 0.1 and 2 Hz when subjects tracked a moving dot, compared to tracking in darkness. Our results demonstrate that a stationary large-field pattern has a stabilizing effect in all conditions, independent of whether the eyes are fixing on a stationary target or tracking a moving target.lld:pubmed
pubmed-article:19775892pubmed:languageenglld:pubmed
pubmed-article:19775892pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19775892pubmed:citationSubsetIMlld:pubmed
pubmed-article:19775892pubmed:statusMEDLINElld:pubmed
pubmed-article:19775892pubmed:monthJanlld:pubmed
pubmed-article:19775892pubmed:issn1879-2219lld:pubmed
pubmed-article:19775892pubmed:authorpubmed-author:DietzVVlld:pubmed
pubmed-article:19775892pubmed:authorpubmed-author:AwadKKlld:pubmed
pubmed-article:19775892pubmed:authorpubmed-author:StraumannDDlld:pubmed
pubmed-article:19775892pubmed:authorpubmed-author:HegemannSSlld:pubmed
pubmed-article:19775892pubmed:authorpubmed-author:LaurentKKlld:pubmed
pubmed-article:19775892pubmed:authorpubmed-author:BockischC JCJlld:pubmed
pubmed-article:19775892pubmed:authorpubmed-author:van HedelH...lld:pubmed
pubmed-article:19775892pubmed:copyrightInfoCopyright 2009 Elsevier B.V. All rights reserved.lld:pubmed
pubmed-article:19775892pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19775892pubmed:volume31lld:pubmed
pubmed-article:19775892pubmed:ownerNLMlld:pubmed
pubmed-article:19775892pubmed:authorsCompleteYlld:pubmed
pubmed-article:19775892pubmed:pagination37-41lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:meshHeadingpubmed-meshheading:19775892...lld:pubmed
pubmed-article:19775892pubmed:year2010lld:pubmed
pubmed-article:19775892pubmed:articleTitleVisual contribution to postural stability: Interaction between target fixation or tracking and static or dynamic large-field stimulus.lld:pubmed
pubmed-article:19775892pubmed:affiliationNeurology Department, Zürich University Hospital, Switzerland. jean.laurens@gmail.comlld:pubmed
pubmed-article:19775892pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19775892pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed