Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19757962rdf:typepubmed:Citationlld:pubmed
pubmed-article:19757962lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:19757962lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:19757962lifeskim:mentionsumls-concept:C0008902lld:lifeskim
pubmed-article:19757962lifeskim:mentionsumls-concept:C0234621lld:lifeskim
pubmed-article:19757962lifeskim:mentionsumls-concept:C0439064lld:lifeskim
pubmed-article:19757962lifeskim:mentionsumls-concept:C2348519lld:lifeskim
pubmed-article:19757962pubmed:issue3lld:pubmed
pubmed-article:19757962pubmed:dateCreated2009-9-17lld:pubmed
pubmed-article:19757962pubmed:abstractTextThis paper describes a new model for human visual classification that enables the recovery of image features that explain performance on different visual classification tasks. Unlike some common methods, this algorithm does not explain performance with a single linear classifier operating on raw image pixels. Instead, it models classification as the result of combining the output of multiple feature detectors. This approach extracts more information about human visual classification than has been previously possible with other methods and provides a foundation for further exploration.lld:pubmed
pubmed-article:19757962pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19757962pubmed:languageenglld:pubmed
pubmed-article:19757962pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19757962pubmed:citationSubsetIMlld:pubmed
pubmed-article:19757962pubmed:statusMEDLINElld:pubmed
pubmed-article:19757962pubmed:issn1534-7362lld:pubmed
pubmed-article:19757962pubmed:authorpubmed-author:RossMichael...lld:pubmed
pubmed-article:19757962pubmed:authorpubmed-author:CohenAndrew...lld:pubmed
pubmed-article:19757962pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19757962pubmed:volume9lld:pubmed
pubmed-article:19757962pubmed:ownerNLMlld:pubmed
pubmed-article:19757962pubmed:authorsCompleteYlld:pubmed
pubmed-article:19757962pubmed:pagination23.1-24lld:pubmed
pubmed-article:19757962pubmed:meshHeadingpubmed-meshheading:19757962...lld:pubmed
pubmed-article:19757962pubmed:meshHeadingpubmed-meshheading:19757962...lld:pubmed
pubmed-article:19757962pubmed:meshHeadingpubmed-meshheading:19757962...lld:pubmed
pubmed-article:19757962pubmed:meshHeadingpubmed-meshheading:19757962...lld:pubmed
pubmed-article:19757962pubmed:meshHeadingpubmed-meshheading:19757962...lld:pubmed
pubmed-article:19757962pubmed:meshHeadingpubmed-meshheading:19757962...lld:pubmed
pubmed-article:19757962pubmed:meshHeadingpubmed-meshheading:19757962...lld:pubmed
pubmed-article:19757962pubmed:meshHeadingpubmed-meshheading:19757962...lld:pubmed
pubmed-article:19757962pubmed:year2009lld:pubmed
pubmed-article:19757962pubmed:articleTitleUsing graphical models to infer multiple visual classification features.lld:pubmed
pubmed-article:19757962pubmed:affiliationDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. mgross@mit.edulld:pubmed
pubmed-article:19757962pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19757962pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:19757962pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed