Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19736969rdf:typepubmed:Citationlld:pubmed
pubmed-article:19736969lifeskim:mentionsumls-concept:C0376249lld:lifeskim
pubmed-article:19736969lifeskim:mentionsumls-concept:C1521871lld:lifeskim
pubmed-article:19736969pubmed:issue9lld:pubmed
pubmed-article:19736969pubmed:dateCreated2009-9-9lld:pubmed
pubmed-article:19736969pubmed:abstractTextParametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.lld:pubmed
pubmed-article:19736969pubmed:languageenglld:pubmed
pubmed-article:19736969pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19736969pubmed:citationSubsetIMlld:pubmed
pubmed-article:19736969pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19736969pubmed:statusMEDLINElld:pubmed
pubmed-article:19736969pubmed:monthSeplld:pubmed
pubmed-article:19736969pubmed:issn1530-6992lld:pubmed
pubmed-article:19736969pubmed:authorpubmed-author:EganA RARlld:pubmed
pubmed-article:19736969pubmed:authorpubmed-author:RoukesM LMLlld:pubmed
pubmed-article:19736969pubmed:authorpubmed-author:KarabalinR...lld:pubmed
pubmed-article:19736969pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19736969pubmed:volume9lld:pubmed
pubmed-article:19736969pubmed:ownerNLMlld:pubmed
pubmed-article:19736969pubmed:authorsCompleteYlld:pubmed
pubmed-article:19736969pubmed:pagination3116-23lld:pubmed
pubmed-article:19736969pubmed:meshHeadingpubmed-meshheading:19736969...lld:pubmed
pubmed-article:19736969pubmed:meshHeadingpubmed-meshheading:19736969...lld:pubmed
pubmed-article:19736969pubmed:meshHeadingpubmed-meshheading:19736969...lld:pubmed
pubmed-article:19736969pubmed:meshHeadingpubmed-meshheading:19736969...lld:pubmed
pubmed-article:19736969pubmed:meshHeadingpubmed-meshheading:19736969...lld:pubmed
pubmed-article:19736969pubmed:meshHeadingpubmed-meshheading:19736969...lld:pubmed
pubmed-article:19736969pubmed:meshHeadingpubmed-meshheading:19736969...lld:pubmed
pubmed-article:19736969pubmed:meshHeadingpubmed-meshheading:19736969...lld:pubmed
pubmed-article:19736969pubmed:year2009lld:pubmed
pubmed-article:19736969pubmed:articleTitleParametric nanomechanical amplification at very high frequency.lld:pubmed
pubmed-article:19736969pubmed:affiliationKavli Nanoscience Institute, California Institute of Technology, Pasadena, California 91125, USA.lld:pubmed
pubmed-article:19736969pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19736969pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:19736969pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed