Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19734885rdf:typepubmed:Citationlld:pubmed
pubmed-article:19734885lifeskim:mentionsumls-concept:C0002367lld:lifeskim
pubmed-article:19734885lifeskim:mentionsumls-concept:C0332621lld:lifeskim
pubmed-article:19734885lifeskim:mentionsumls-concept:C0033727lld:lifeskim
pubmed-article:19734885lifeskim:mentionsumls-concept:C0032521lld:lifeskim
pubmed-article:19734885lifeskim:mentionsumls-concept:C0020923lld:lifeskim
pubmed-article:19734885lifeskim:mentionsumls-concept:C0242414lld:lifeskim
pubmed-article:19734885pubmed:issue10lld:pubmed
pubmed-article:19734885pubmed:dateCreated2009-9-23lld:pubmed
pubmed-article:19734885pubmed:abstractTextThe development of anhydrous proton-conductive materials operating at temperatures above 80 degrees C is a challenge that needs to be met for practical applications. Herein, we propose the new idea of encapsulation of a proton-carrier molecule--imidazole in this work--in aluminium porous coordination polymers for the creation of a hybridized proton conductor under anhydrous conditions. Tuning of the host-guest interaction can generate a good proton-conducting path at temperatures above 100 degrees C. The dynamics of the adsorbed imidazole strongly affect the conductivity determined by (2)H solid-state NMR. Isotope measurements of conductivity using imidazole-d4 showed that the proton-hopping mechanism was dominant for the conducting path. This work suggests that the combination of guest molecules and a variety of microporous frameworks would afford highly mobile proton carriers in solids and gives an idea for designing a new type of proton conductor, particularly for high-temperature and anhydrous conditions.lld:pubmed
pubmed-article:19734885pubmed:languageenglld:pubmed
pubmed-article:19734885pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19734885pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:19734885pubmed:monthOctlld:pubmed
pubmed-article:19734885pubmed:issn1476-1122lld:pubmed
pubmed-article:19734885pubmed:authorpubmed-author:KawamuraTakas...lld:pubmed
pubmed-article:19734885pubmed:authorpubmed-author:KitagawaSusum...lld:pubmed
pubmed-article:19734885pubmed:authorpubmed-author:TanakaDaisuke...lld:pubmed
pubmed-article:19734885pubmed:authorpubmed-author:HiguchiMasaka...lld:pubmed
pubmed-article:19734885pubmed:authorpubmed-author:HorikeSatoshi...lld:pubmed
pubmed-article:19734885pubmed:authorpubmed-author:MizunoMotohir...lld:pubmed
pubmed-article:19734885pubmed:authorpubmed-author:YanaiNobuhiro...lld:pubmed
pubmed-article:19734885pubmed:authorpubmed-author:BureekaewSare...lld:pubmed
pubmed-article:19734885pubmed:issnTypePrintlld:pubmed
pubmed-article:19734885pubmed:volume8lld:pubmed
pubmed-article:19734885pubmed:ownerNLMlld:pubmed
pubmed-article:19734885pubmed:authorsCompleteYlld:pubmed
pubmed-article:19734885pubmed:pagination831-6lld:pubmed
pubmed-article:19734885pubmed:year2009lld:pubmed
pubmed-article:19734885pubmed:articleTitleOne-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity.lld:pubmed
pubmed-article:19734885pubmed:affiliationDepartment of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.lld:pubmed
pubmed-article:19734885pubmed:publicationTypeJournal Articlelld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19734885lld:pubmed