pubmed-article:19734885 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:19734885 | lifeskim:mentions | umls-concept:C0002367 | lld:lifeskim |
pubmed-article:19734885 | lifeskim:mentions | umls-concept:C0332621 | lld:lifeskim |
pubmed-article:19734885 | lifeskim:mentions | umls-concept:C0033727 | lld:lifeskim |
pubmed-article:19734885 | lifeskim:mentions | umls-concept:C0032521 | lld:lifeskim |
pubmed-article:19734885 | lifeskim:mentions | umls-concept:C0020923 | lld:lifeskim |
pubmed-article:19734885 | lifeskim:mentions | umls-concept:C0242414 | lld:lifeskim |
pubmed-article:19734885 | pubmed:issue | 10 | lld:pubmed |
pubmed-article:19734885 | pubmed:dateCreated | 2009-9-23 | lld:pubmed |
pubmed-article:19734885 | pubmed:abstractText | The development of anhydrous proton-conductive materials operating at temperatures above 80 degrees C is a challenge that needs to be met for practical applications. Herein, we propose the new idea of encapsulation of a proton-carrier molecule--imidazole in this work--in aluminium porous coordination polymers for the creation of a hybridized proton conductor under anhydrous conditions. Tuning of the host-guest interaction can generate a good proton-conducting path at temperatures above 100 degrees C. The dynamics of the adsorbed imidazole strongly affect the conductivity determined by (2)H solid-state NMR. Isotope measurements of conductivity using imidazole-d4 showed that the proton-hopping mechanism was dominant for the conducting path. This work suggests that the combination of guest molecules and a variety of microporous frameworks would afford highly mobile proton carriers in solids and gives an idea for designing a new type of proton conductor, particularly for high-temperature and anhydrous conditions. | lld:pubmed |
pubmed-article:19734885 | pubmed:language | eng | lld:pubmed |
pubmed-article:19734885 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19734885 | pubmed:status | PubMed-not-MEDLINE | lld:pubmed |
pubmed-article:19734885 | pubmed:month | Oct | lld:pubmed |
pubmed-article:19734885 | pubmed:issn | 1476-1122 | lld:pubmed |
pubmed-article:19734885 | pubmed:author | pubmed-author:KawamuraTakas... | lld:pubmed |
pubmed-article:19734885 | pubmed:author | pubmed-author:KitagawaSusum... | lld:pubmed |
pubmed-article:19734885 | pubmed:author | pubmed-author:TanakaDaisuke... | lld:pubmed |
pubmed-article:19734885 | pubmed:author | pubmed-author:HiguchiMasaka... | lld:pubmed |
pubmed-article:19734885 | pubmed:author | pubmed-author:HorikeSatoshi... | lld:pubmed |
pubmed-article:19734885 | pubmed:author | pubmed-author:MizunoMotohir... | lld:pubmed |
pubmed-article:19734885 | pubmed:author | pubmed-author:YanaiNobuhiro... | lld:pubmed |
pubmed-article:19734885 | pubmed:author | pubmed-author:BureekaewSare... | lld:pubmed |
pubmed-article:19734885 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:19734885 | pubmed:volume | 8 | lld:pubmed |
pubmed-article:19734885 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:19734885 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:19734885 | pubmed:pagination | 831-6 | lld:pubmed |
pubmed-article:19734885 | pubmed:year | 2009 | lld:pubmed |
pubmed-article:19734885 | pubmed:articleTitle | One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. | lld:pubmed |
pubmed-article:19734885 | pubmed:affiliation | Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan. | lld:pubmed |
pubmed-article:19734885 | pubmed:publicationType | Journal Article | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:19734885 | lld:pubmed |