Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19628868rdf:typepubmed:Citationlld:pubmed
pubmed-article:19628868lifeskim:mentionsumls-concept:C0008155lld:lifeskim
pubmed-article:19628868lifeskim:mentionsumls-concept:C0023946lld:lifeskim
pubmed-article:19628868lifeskim:mentionsumls-concept:C0333052lld:lifeskim
pubmed-article:19628868lifeskim:mentionsumls-concept:C1706470lld:lifeskim
pubmed-article:19628868lifeskim:mentionsumls-concept:C1706469lld:lifeskim
pubmed-article:19628868pubmed:issue5939lld:pubmed
pubmed-article:19628868pubmed:dateCreated2009-7-24lld:pubmed
pubmed-article:19628868pubmed:abstractTextThe coordination of eukaryotic flagella is essential for many of the most basic processes of life (motility, sensing, and development), yet its emergence and regulation and its connection to locomotion are poorly understood. Previous studies show that the unicellular alga Chlamydomonas, widely regarded as an ideal system in which to study flagellar biology, swims forward by the synchronous action of its two flagella. Using high-speed imaging over long intervals, we found a richer behavior: A cell swimming in the dark stochastically switches between synchronous and asynchronous flagellar beating. Three-dimensional tracking shows that these regimes lead, respectively, to nearly straight swimming and to abrupt large reorientations, which yield a eukaryotic version of the "run-and-tumble" motion of peritrichously flagellated bacteria.lld:pubmed
pubmed-article:19628868pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19628868pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19628868pubmed:languageenglld:pubmed
pubmed-article:19628868pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19628868pubmed:citationSubsetIMlld:pubmed
pubmed-article:19628868pubmed:statusMEDLINElld:pubmed
pubmed-article:19628868pubmed:monthJullld:pubmed
pubmed-article:19628868pubmed:issn1095-9203lld:pubmed
pubmed-article:19628868pubmed:authorpubmed-author:GollubJ PJPlld:pubmed
pubmed-article:19628868pubmed:authorpubmed-author:GoldsteinRaym...lld:pubmed
pubmed-article:19628868pubmed:authorpubmed-author:TuvalIdanIlld:pubmed
pubmed-article:19628868pubmed:authorpubmed-author:PolinMarcoMlld:pubmed
pubmed-article:19628868pubmed:authorpubmed-author:DrescherKnutKlld:pubmed
pubmed-article:19628868pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19628868pubmed:day24lld:pubmed
pubmed-article:19628868pubmed:volume325lld:pubmed
pubmed-article:19628868pubmed:ownerNLMlld:pubmed
pubmed-article:19628868pubmed:authorsCompleteYlld:pubmed
pubmed-article:19628868pubmed:pagination487-90lld:pubmed
pubmed-article:19628868pubmed:meshHeadingpubmed-meshheading:19628868...lld:pubmed
pubmed-article:19628868pubmed:meshHeadingpubmed-meshheading:19628868...lld:pubmed
pubmed-article:19628868pubmed:meshHeadingpubmed-meshheading:19628868...lld:pubmed
pubmed-article:19628868pubmed:meshHeadingpubmed-meshheading:19628868...lld:pubmed
pubmed-article:19628868pubmed:year2009lld:pubmed
pubmed-article:19628868pubmed:articleTitleChlamydomonas swims with two "gears" in a eukaryotic version of run-and-tumble locomotion.lld:pubmed
pubmed-article:19628868pubmed:affiliationDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.lld:pubmed
pubmed-article:19628868pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19628868pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:19628868pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19628868lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19628868lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19628868lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19628868lld:pubmed