Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19532922rdf:typepubmed:Citationlld:pubmed
pubmed-article:19532922lifeskim:mentionsumls-concept:C0017992lld:lifeskim
pubmed-article:19532922lifeskim:mentionsumls-concept:C0333051lld:lifeskim
pubmed-article:19532922lifeskim:mentionsumls-concept:C1533643lld:lifeskim
pubmed-article:19532922lifeskim:mentionsumls-concept:C1705920lld:lifeskim
pubmed-article:19532922lifeskim:mentionsumls-concept:C0178812lld:lifeskim
pubmed-article:19532922lifeskim:mentionsumls-concept:C0039778lld:lifeskim
pubmed-article:19532922lifeskim:mentionsumls-concept:C1554184lld:lifeskim
pubmed-article:19532922lifeskim:mentionsumls-concept:C0439836lld:lifeskim
pubmed-article:19532922lifeskim:mentionsumls-concept:C1879547lld:lifeskim
pubmed-article:19532922lifeskim:mentionsumls-concept:C0441712lld:lifeskim
pubmed-article:19532922pubmed:issue19lld:pubmed
pubmed-article:19532922pubmed:dateCreated2009-6-17lld:pubmed
pubmed-article:19532922pubmed:abstractTextDensity functional theory calculations demonstrate that Al(III)-catalyzed conversion of glyoxal to glycolic acid proceeds via a 7-membered dual Lewis acid-hydrogen bonding activation transition state of the 1,2-hydride shift, rather than the previously proposed 5-membered metal-alkoxide chelate activation transition state.lld:pubmed
pubmed-article:19532922pubmed:languageenglld:pubmed
pubmed-article:19532922pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19532922pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:19532922pubmed:monthMaylld:pubmed
pubmed-article:19532922pubmed:issn1359-7345lld:pubmed
pubmed-article:19532922pubmed:authorpubmed-author:YamamotoYoshi...lld:pubmed
pubmed-article:19532922pubmed:authorpubmed-author:InoueYoshihis...lld:pubmed
pubmed-article:19532922pubmed:authorpubmed-author:IwasakiTakano...lld:pubmed
pubmed-article:19532922pubmed:authorpubmed-author:OhshimaTakash...lld:pubmed
pubmed-article:19532922pubmed:authorpubmed-author:MashimaKazush...lld:pubmed
pubmed-article:19532922pubmed:authorpubmed-author:MaegawaYusuke...lld:pubmed
pubmed-article:19532922pubmed:authorpubmed-author:TakakiUsajiUlld:pubmed
pubmed-article:19532922pubmed:authorpubmed-author:SaekiTakuyaTlld:pubmed
pubmed-article:19532922pubmed:authorpubmed-author:ItouKenjiKlld:pubmed
pubmed-article:19532922pubmed:issnTypePrintlld:pubmed
pubmed-article:19532922pubmed:day21lld:pubmed
pubmed-article:19532922pubmed:ownerNLMlld:pubmed
pubmed-article:19532922pubmed:authorsCompleteYlld:pubmed
pubmed-article:19532922pubmed:pagination2688-90lld:pubmed
pubmed-article:19532922pubmed:year2009lld:pubmed
pubmed-article:19532922pubmed:articleTitleTheoretical study of Al(III)-catalyzed conversion of glyoxal to glycolic acid: dual activated 1,2-hydride shift mechanism by protonated Al(OH)3 species.lld:pubmed
pubmed-article:19532922pubmed:affiliationDepartment of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan. ohshima@chem.es.osaka-u.ac.jplld:pubmed
pubmed-article:19532922pubmed:publicationTypeJournal Articlelld:pubmed