Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19372606rdf:typepubmed:Citationlld:pubmed
pubmed-article:19372606lifeskim:mentionsumls-concept:C1806781lld:lifeskim
pubmed-article:19372606lifeskim:mentionsumls-concept:C1182673lld:lifeskim
pubmed-article:19372606lifeskim:mentionsumls-concept:C0205148lld:lifeskim
pubmed-article:19372606lifeskim:mentionsumls-concept:C1705483lld:lifeskim
pubmed-article:19372606lifeskim:mentionsumls-concept:C1552871lld:lifeskim
pubmed-article:19372606lifeskim:mentionsumls-concept:C2828393lld:lifeskim
pubmed-article:19372606pubmed:issue6lld:pubmed
pubmed-article:19372606pubmed:dateCreated2009-4-17lld:pubmed
pubmed-article:19372606pubmed:abstractTextWe present two algorithms for computing distances along convex and non-convex polyhedral surfaces. The first algorithm computes exact minimal-geodesic distances and the second algorithm combines these distances to compute exact shortest-path distances along the surface. Both algorithms have been extended to compute the exact minimal-geodesic paths and shortest paths. These algorithms have been implemented and validated on surfaces for which the correct solutions are known, in order to verify the accuracy and to measure the run-time performance, which is cubic or less for each algorithm. The exact-distance computations carried out by these algorithms are feasible for large-scale surfaces containing tens of thousands of vertices, and are a necessary component of near-isometric surface flattening methods that accurately transform curved manifolds into flat representations.lld:pubmed
pubmed-article:19372606pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19372606pubmed:languageenglld:pubmed
pubmed-article:19372606pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19372606pubmed:citationSubsetIMlld:pubmed
pubmed-article:19372606pubmed:statusMEDLINElld:pubmed
pubmed-article:19372606pubmed:monthJunlld:pubmed
pubmed-article:19372606pubmed:issn0162-8828lld:pubmed
pubmed-article:19372606pubmed:authorpubmed-author:Balasubramani...lld:pubmed
pubmed-article:19372606pubmed:authorpubmed-author:SchwartzEric...lld:pubmed
pubmed-article:19372606pubmed:authorpubmed-author:PolimeniJonat...lld:pubmed
pubmed-article:19372606pubmed:issnTypePrintlld:pubmed
pubmed-article:19372606pubmed:volume31lld:pubmed
pubmed-article:19372606pubmed:ownerNLMlld:pubmed
pubmed-article:19372606pubmed:authorsCompleteYlld:pubmed
pubmed-article:19372606pubmed:pagination1006-16lld:pubmed
pubmed-article:19372606pubmed:meshHeadingpubmed-meshheading:19372606...lld:pubmed
pubmed-article:19372606pubmed:meshHeadingpubmed-meshheading:19372606...lld:pubmed
pubmed-article:19372606pubmed:meshHeadingpubmed-meshheading:19372606...lld:pubmed
pubmed-article:19372606pubmed:meshHeadingpubmed-meshheading:19372606...lld:pubmed
pubmed-article:19372606pubmed:meshHeadingpubmed-meshheading:19372606...lld:pubmed
pubmed-article:19372606pubmed:meshHeadingpubmed-meshheading:19372606...lld:pubmed
pubmed-article:19372606pubmed:meshHeadingpubmed-meshheading:19372606...lld:pubmed
pubmed-article:19372606pubmed:meshHeadingpubmed-meshheading:19372606...lld:pubmed
pubmed-article:19372606pubmed:year2009lld:pubmed
pubmed-article:19372606pubmed:articleTitleExact geodesics and shortest paths on polyhedral surfaces.lld:pubmed
pubmed-article:19372606pubmed:affiliationDepartment of Cognitive and Neural Systems, Boston University, 677 Beacon Street, Boston, MA 02215, USA. mukundb@cns.bu.edulld:pubmed
pubmed-article:19372606pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19372606pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed