Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19367167rdf:typepubmed:Citationlld:pubmed
pubmed-article:19367167lifeskim:mentionsumls-concept:C0035647lld:lifeskim
pubmed-article:19367167lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:19367167lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:19367167lifeskim:mentionsumls-concept:C0025663lld:lifeskim
pubmed-article:19367167lifeskim:mentionsumls-concept:C1522318lld:lifeskim
pubmed-article:19367167lifeskim:mentionsumls-concept:C0681842lld:lifeskim
pubmed-article:19367167lifeskim:mentionsumls-concept:C0185125lld:lifeskim
pubmed-article:19367167lifeskim:mentionsumls-concept:C0220901lld:lifeskim
pubmed-article:19367167pubmed:issue4lld:pubmed
pubmed-article:19367167pubmed:dateCreated2009-6-16lld:pubmed
pubmed-article:19367167pubmed:abstractTextClinical decision-making often relies on a subject's absolute risk of a disease event of interest. However, in a frail population, competing risk events may preclude the occurrence of the event of interest. We review competing-risk regression models with a view toward predictive modeling. We show how measures of prognostic performance (such as calibration and discrimination) can be adapted to the competing-risks setting. An example of coronary heart disease (CHD) prediction in women aged 55-90 years in the Rotterdam study is used to illustrate the proposed methods, and to compare the Fine and Gray regression model to 2 alternative approaches: (1) a standard Cox survival model, which ignores the competing risk of non-CHD death, and (2) a cause-specific hazards model, which combines proportional hazards models for the event of interest and the competing event. The Fine and Gray model and the cause-specific hazards model perform similarly. However, the standard Cox model substantially overestimates 10-year risk of CHD; it classifies 18% of the individuals as high risk (>20%), compared with only 8% according to the Fine and Gray model. We conclude that competing risks have to be considered explicitly in frail populations such as the elderly.lld:pubmed
pubmed-article:19367167pubmed:languageenglld:pubmed
pubmed-article:19367167pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19367167pubmed:citationSubsetIMlld:pubmed
pubmed-article:19367167pubmed:statusMEDLINElld:pubmed
pubmed-article:19367167pubmed:monthJullld:pubmed
pubmed-article:19367167pubmed:issn1531-5487lld:pubmed
pubmed-article:19367167pubmed:authorpubmed-author:WittemanJacqu...lld:pubmed
pubmed-article:19367167pubmed:authorpubmed-author:SteyerbergEwo...lld:pubmed
pubmed-article:19367167pubmed:authorpubmed-author:KollerMichael...lld:pubmed
pubmed-article:19367167pubmed:authorpubmed-author:WolbersMarcel...lld:pubmed
pubmed-article:19367167pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19367167pubmed:volume20lld:pubmed
pubmed-article:19367167pubmed:ownerNLMlld:pubmed
pubmed-article:19367167pubmed:authorsCompleteYlld:pubmed
pubmed-article:19367167pubmed:pagination555-61lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:meshHeadingpubmed-meshheading:19367167...lld:pubmed
pubmed-article:19367167pubmed:year2009lld:pubmed
pubmed-article:19367167pubmed:articleTitlePrognostic models with competing risks: methods and application to coronary risk prediction.lld:pubmed
pubmed-article:19367167pubmed:affiliationBasel Institute for Clinical Epidemiology and Biostatistics, University Hospital Basel, Basel, Switzerland. mwolbers@oucru.orglld:pubmed
pubmed-article:19367167pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19367167pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19367167lld:pubmed