Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19339553rdf:typepubmed:Citationlld:pubmed
pubmed-article:19339553lifeskim:mentionsumls-concept:C0072899lld:lifeskim
pubmed-article:19339553lifeskim:mentionsumls-concept:C0441655lld:lifeskim
pubmed-article:19339553lifeskim:mentionsumls-concept:C2753224lld:lifeskim
pubmed-article:19339553lifeskim:mentionsumls-concept:C0851285lld:lifeskim
pubmed-article:19339553pubmed:issuePt 8lld:pubmed
pubmed-article:19339553pubmed:dateCreated2009-4-2lld:pubmed
pubmed-article:19339553pubmed:abstractTextSpine morphogenesis mainly occurs during development as a morphological shift from filopodia-like thin protrusions to bulbous ones. We have previously reported that synaptic clustering of the actin-binding protein drebrin in dendritic filopodia governs spine morphogenesis and synaptic PSD-95 clustering. Here, we report the activity-dependent cellular mechanisms for spine morphogenesis, in which the activity of AMPA receptors (AMPARs) regulates drebrin clustering in spines by promoting drebrin stabilization. In cultured developing hippocampal neurons, pharmacological blockade of AMPARs, but not of other glutamate receptors, suppressed postsynaptic drebrin clustering without affecting presynaptic clustering of synapsin I (synapsin-1). Conversely, the enhancement of the action of AMPARs promoted drebrin clustering in spines. When we explored drebrin dynamics by photobleaching individual spines, we found that AMPAR activity increased the fraction of stable drebrin without affecting the time constant of drebrin turnover. An increase in the fraction of stable drebrin corresponded with increased drebrin clustering. AMPAR blockade also suppressed normal morphological maturation of spines and synaptic PSD-95 clustering in spines. Together, these data suggest that AMPAR-mediated stabilization of drebrin in spines is an activity-dependent cellular mechanism for spine morphogenesis.lld:pubmed
pubmed-article:19339553pubmed:languageenglld:pubmed
pubmed-article:19339553pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19339553pubmed:citationSubsetIMlld:pubmed
pubmed-article:19339553pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19339553pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19339553pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19339553pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19339553pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19339553pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19339553pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19339553pubmed:statusMEDLINElld:pubmed
pubmed-article:19339553pubmed:monthAprlld:pubmed
pubmed-article:19339553pubmed:issn0021-9533lld:pubmed
pubmed-article:19339553pubmed:authorpubmed-author:YamazakiHiroy...lld:pubmed
pubmed-article:19339553pubmed:authorpubmed-author:TakahashiHide...lld:pubmed
pubmed-article:19339553pubmed:authorpubmed-author:SekinoYukoYlld:pubmed
pubmed-article:19339553pubmed:authorpubmed-author:ShiraoTomoaki...lld:pubmed
pubmed-article:19339553pubmed:authorpubmed-author:HanamuraKenji...lld:pubmed
pubmed-article:19339553pubmed:issnTypePrintlld:pubmed
pubmed-article:19339553pubmed:day15lld:pubmed
pubmed-article:19339553pubmed:volume122lld:pubmed
pubmed-article:19339553pubmed:ownerNLMlld:pubmed
pubmed-article:19339553pubmed:authorsCompleteYlld:pubmed
pubmed-article:19339553pubmed:pagination1211-9lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:meshHeadingpubmed-meshheading:19339553...lld:pubmed
pubmed-article:19339553pubmed:year2009lld:pubmed
pubmed-article:19339553pubmed:articleTitleActivity of the AMPA receptor regulates drebrin stabilization in dendritic spine morphogenesis.lld:pubmed
pubmed-article:19339553pubmed:affiliationDepartment of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan.lld:pubmed
pubmed-article:19339553pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19339553pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19339553lld:pubmed