Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19250891rdf:typepubmed:Citationlld:pubmed
pubmed-article:19250891lifeskim:mentionsumls-concept:C0329040lld:lifeskim
pubmed-article:19250891lifeskim:mentionsumls-concept:C0599851lld:lifeskim
pubmed-article:19250891lifeskim:mentionsumls-concept:C0176751lld:lifeskim
pubmed-article:19250891lifeskim:mentionsumls-concept:C0231448lld:lifeskim
pubmed-article:19250891lifeskim:mentionsumls-concept:C1527148lld:lifeskim
pubmed-article:19250891lifeskim:mentionsumls-concept:C0600484lld:lifeskim
pubmed-article:19250891lifeskim:mentionsumls-concept:C1522240lld:lifeskim
pubmed-article:19250891lifeskim:mentionsumls-concept:C0205375lld:lifeskim
pubmed-article:19250891pubmed:issue6lld:pubmed
pubmed-article:19250891pubmed:dateCreated2009-6-5lld:pubmed
pubmed-article:19250891pubmed:abstractTextThree-dimensional polymer scaffolds are useful culture systems for neural cell growth and can provide permissive substrates that support neural processes as they extend across lesions in the brain and spinal cord. Degradable poly(ethylene) glycol (PEG) gels have been identified as a particularly promising scaffold material for this purpose; however, process extension within PEG gels is limited to late stages of hydrogel degradation. Here we demonstrate that earlier process extension can be achieved from primary neural cells encapsulated within PEG gels by creating a network of interconnected pores throughout the gel. Our method of incorporating these pores involves co-encapsulating a cell solution and a fibrin network within a PEG gel. The fibrin is subsequently enzymatically degraded under cytocompatible conditions, leaving behind a network of interconnected pores within the PEG gel. The primary neural cell population encapsulated in the gel is of mixed composition, containing differentiated neurons, and multipotent neuronal and glial precursor cells. We demonstrate that the initial presence of fibrin does not influence the cell-fate decisions of the encapsulated precursor cells. We also demonstrate that this fabrication approach enables simple, efficient and uniform seeding of viable cells throughout the entire porous scaffold.lld:pubmed
pubmed-article:19250891pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19250891pubmed:languageenglld:pubmed
pubmed-article:19250891pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19250891pubmed:citationSubsetIMlld:pubmed
pubmed-article:19250891pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19250891pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19250891pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19250891pubmed:statusMEDLINElld:pubmed
pubmed-article:19250891pubmed:monthJullld:pubmed
pubmed-article:19250891pubmed:issn1878-7568lld:pubmed
pubmed-article:19250891pubmed:authorpubmed-author:MahoneyM JMJlld:pubmed
pubmed-article:19250891pubmed:authorpubmed-author:ColeA AAAlld:pubmed
pubmed-article:19250891pubmed:authorpubmed-author:BjugstadK BKBlld:pubmed
pubmed-article:19250891pubmed:authorpubmed-author:NambaR MRMlld:pubmed
pubmed-article:19250891pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19250891pubmed:volume5lld:pubmed
pubmed-article:19250891pubmed:ownerNLMlld:pubmed
pubmed-article:19250891pubmed:authorsCompleteYlld:pubmed
pubmed-article:19250891pubmed:pagination1884-97lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:meshHeadingpubmed-meshheading:19250891...lld:pubmed
pubmed-article:19250891pubmed:year2009lld:pubmed
pubmed-article:19250891pubmed:articleTitleDevelopment of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.lld:pubmed
pubmed-article:19250891pubmed:affiliationDepartment of Chemistry & Biochemistry, University of Colorado, Boulder, 80309, USA.lld:pubmed
pubmed-article:19250891pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19250891pubmed:publicationTypeEvaluation Studieslld:pubmed
pubmed-article:19250891pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19250891lld:pubmed