pubmed-article:19206295 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:19206295 | lifeskim:mentions | umls-concept:C0439780 | lld:lifeskim |
pubmed-article:19206295 | lifeskim:mentions | umls-concept:C1705970 | lld:lifeskim |
pubmed-article:19206295 | lifeskim:mentions | umls-concept:C0678594 | lld:lifeskim |
pubmed-article:19206295 | lifeskim:mentions | umls-concept:C1257851 | lld:lifeskim |
pubmed-article:19206295 | lifeskim:mentions | umls-concept:C0243067 | lld:lifeskim |
pubmed-article:19206295 | lifeskim:mentions | umls-concept:C1261552 | lld:lifeskim |
pubmed-article:19206295 | pubmed:issue | 12 | lld:pubmed |
pubmed-article:19206295 | pubmed:dateCreated | 2009-2-11 | lld:pubmed |
pubmed-article:19206295 | pubmed:abstractText | Electrical current could be efficiently guided in 2D nanotube networks by introducing specific topological defects within the periodic framework. Using semiempirical transport calculations coupled with Landauer-Buttiker formalism of quantum transport in multiterminal nanoscale systems, we provide a detailed analysis of the processes governing the atomic-scale design of nanotube circuits. We found that when defects are introduced as patches in specific sites, they act as bouncing centers that reinject electrons along specific paths, via a wave reflection process. This type of defects can be incorporated while preserving the 3-fold connectivity of each carbon atom embedded within the graphitic lattice. Our findings open up a new way to explore bottom-up design, at the nanometer scale, of complex nanotube circuits which could be extended to 3D nanosystems and applied in the fabrication of nanoelectronic devices. | lld:pubmed |
pubmed-article:19206295 | pubmed:language | eng | lld:pubmed |
pubmed-article:19206295 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19206295 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:19206295 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:19206295 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:19206295 | pubmed:month | Dec | lld:pubmed |
pubmed-article:19206295 | pubmed:issn | 1936-086X | lld:pubmed |
pubmed-article:19206295 | pubmed:author | pubmed-author:MeunierVincen... | lld:pubmed |
pubmed-article:19206295 | pubmed:author | pubmed-author:TerronesMauri... | lld:pubmed |
pubmed-article:19206295 | pubmed:author | pubmed-author:TerronesHumbe... | lld:pubmed |
pubmed-article:19206295 | pubmed:author | pubmed-author:Romo-HerreraJ... | lld:pubmed |
pubmed-article:19206295 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:19206295 | pubmed:day | 23 | lld:pubmed |
pubmed-article:19206295 | pubmed:volume | 2 | lld:pubmed |
pubmed-article:19206295 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:19206295 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:19206295 | pubmed:pagination | 2585-91 | lld:pubmed |
pubmed-article:19206295 | pubmed:meshHeading | pubmed-meshheading:19206295... | lld:pubmed |
pubmed-article:19206295 | pubmed:meshHeading | pubmed-meshheading:19206295... | lld:pubmed |
pubmed-article:19206295 | pubmed:meshHeading | pubmed-meshheading:19206295... | lld:pubmed |
pubmed-article:19206295 | pubmed:year | 2008 | lld:pubmed |
pubmed-article:19206295 | pubmed:articleTitle | Guiding electrical current in nanotube circuits using structural defects: a step forward in nanoelectronics. | lld:pubmed |
pubmed-article:19206295 | pubmed:affiliation | Advanced Materials Department and National Laboratory for Nanoscience and Nanotechnology Reseearch, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas 4a Seccion, San Luis Potosi, Mexico. | lld:pubmed |
pubmed-article:19206295 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:19206295 | pubmed:publicationType | Research Support, U.S. Gov't, Non-P.H.S. | lld:pubmed |
pubmed-article:19206295 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |