Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19206295rdf:typepubmed:Citationlld:pubmed
pubmed-article:19206295lifeskim:mentionsumls-concept:C0439780lld:lifeskim
pubmed-article:19206295lifeskim:mentionsumls-concept:C1705970lld:lifeskim
pubmed-article:19206295lifeskim:mentionsumls-concept:C0678594lld:lifeskim
pubmed-article:19206295lifeskim:mentionsumls-concept:C1257851lld:lifeskim
pubmed-article:19206295lifeskim:mentionsumls-concept:C0243067lld:lifeskim
pubmed-article:19206295lifeskim:mentionsumls-concept:C1261552lld:lifeskim
pubmed-article:19206295pubmed:issue12lld:pubmed
pubmed-article:19206295pubmed:dateCreated2009-2-11lld:pubmed
pubmed-article:19206295pubmed:abstractTextElectrical current could be efficiently guided in 2D nanotube networks by introducing specific topological defects within the periodic framework. Using semiempirical transport calculations coupled with Landauer-Buttiker formalism of quantum transport in multiterminal nanoscale systems, we provide a detailed analysis of the processes governing the atomic-scale design of nanotube circuits. We found that when defects are introduced as patches in specific sites, they act as bouncing centers that reinject electrons along specific paths, via a wave reflection process. This type of defects can be incorporated while preserving the 3-fold connectivity of each carbon atom embedded within the graphitic lattice. Our findings open up a new way to explore bottom-up design, at the nanometer scale, of complex nanotube circuits which could be extended to 3D nanosystems and applied in the fabrication of nanoelectronic devices.lld:pubmed
pubmed-article:19206295pubmed:languageenglld:pubmed
pubmed-article:19206295pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19206295pubmed:citationSubsetIMlld:pubmed
pubmed-article:19206295pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19206295pubmed:statusMEDLINElld:pubmed
pubmed-article:19206295pubmed:monthDeclld:pubmed
pubmed-article:19206295pubmed:issn1936-086Xlld:pubmed
pubmed-article:19206295pubmed:authorpubmed-author:MeunierVincen...lld:pubmed
pubmed-article:19206295pubmed:authorpubmed-author:TerronesMauri...lld:pubmed
pubmed-article:19206295pubmed:authorpubmed-author:TerronesHumbe...lld:pubmed
pubmed-article:19206295pubmed:authorpubmed-author:Romo-HerreraJ...lld:pubmed
pubmed-article:19206295pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19206295pubmed:day23lld:pubmed
pubmed-article:19206295pubmed:volume2lld:pubmed
pubmed-article:19206295pubmed:ownerNLMlld:pubmed
pubmed-article:19206295pubmed:authorsCompleteYlld:pubmed
pubmed-article:19206295pubmed:pagination2585-91lld:pubmed
pubmed-article:19206295pubmed:meshHeadingpubmed-meshheading:19206295...lld:pubmed
pubmed-article:19206295pubmed:meshHeadingpubmed-meshheading:19206295...lld:pubmed
pubmed-article:19206295pubmed:meshHeadingpubmed-meshheading:19206295...lld:pubmed
pubmed-article:19206295pubmed:year2008lld:pubmed
pubmed-article:19206295pubmed:articleTitleGuiding electrical current in nanotube circuits using structural defects: a step forward in nanoelectronics.lld:pubmed
pubmed-article:19206295pubmed:affiliationAdvanced Materials Department and National Laboratory for Nanoscience and Nanotechnology Reseearch, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas 4a Seccion, San Luis Potosi, Mexico.lld:pubmed
pubmed-article:19206295pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19206295pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:19206295pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed