Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19199266rdf:typepubmed:Citationlld:pubmed
pubmed-article:19199266lifeskim:mentionsumls-concept:C0006142lld:lifeskim
pubmed-article:19199266lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:19199266lifeskim:mentionsumls-concept:C0279025lld:lifeskim
pubmed-article:19199266lifeskim:mentionsumls-concept:C0920420lld:lifeskim
pubmed-article:19199266lifeskim:mentionsumls-concept:C0681842lld:lifeskim
pubmed-article:19199266lifeskim:mentionsumls-concept:C1522673lld:lifeskim
pubmed-article:19199266pubmed:issue4lld:pubmed
pubmed-article:19199266pubmed:dateCreated2009-2-9lld:pubmed
pubmed-article:19199266pubmed:abstractTextHormone therapy with tamoxifen has long been the established adjuvant treatment for node-positive, estrogen-receptor-positive breast cancer in postmenopausal women. Since 30-40% of these patients fail to respond, reliableoutcome prediction is necessary for successful treatment allocation. Using pathobiological variables (available in mostclinical records: tumor size, nodal involvement, estrogen and progesterone receptor content) from 596 patients recruitedat a comprehensive cancer center, we developed a prediction model which we validated in an independent cohort of 175patients recruited at a general hospital. Calculated at 3 and 4 years of follow-up, the discrimination indices were 0.716[confidence limits (CL) 0.641, 0.752] and 0.714 (CL 0.650, 0.750) for the training data, and 0.726 (CL 0.591, 0.769) and0.677 (CL 0.580, 0.745) for the testing data. Waiting for more effective approaches from genomic and proteomic studies, amodel based on consolidated pathobiological variables routinely assessed at relatively low costs may be considered as thereference for assessing the gain of new markers over traditional ones, thus substantially improving the conventional use ofprognostic criteria.lld:pubmed
pubmed-article:19199266pubmed:languageenglld:pubmed
pubmed-article:19199266pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19199266pubmed:citationSubsetIMlld:pubmed
pubmed-article:19199266pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19199266pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19199266pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19199266pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19199266pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19199266pubmed:statusMEDLINElld:pubmed
pubmed-article:19199266pubmed:issn0393-6155lld:pubmed
pubmed-article:19199266pubmed:authorpubmed-author:GionMMlld:pubmed
pubmed-article:19199266pubmed:authorpubmed-author:DaidoneM GMGlld:pubmed
pubmed-article:19199266pubmed:authorpubmed-author:OrianaSSlld:pubmed
pubmed-article:19199266pubmed:authorpubmed-author:BoracchiPPlld:pubmed
pubmed-article:19199266pubmed:authorpubmed-author:DittadiRRlld:pubmed
pubmed-article:19199266pubmed:authorpubmed-author:CoradiniDDlld:pubmed
pubmed-article:19199266pubmed:authorpubmed-author:BiganzoliEElld:pubmed
pubmed-article:19199266pubmed:authorpubmed-author:AntoliniSSlld:pubmed
pubmed-article:19199266pubmed:issnTypePrintlld:pubmed
pubmed-article:19199266pubmed:volume23lld:pubmed
pubmed-article:19199266pubmed:ownerNLMlld:pubmed
pubmed-article:19199266pubmed:authorsCompleteYlld:pubmed
pubmed-article:19199266pubmed:pagination199-206lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:meshHeadingpubmed-meshheading:19199266...lld:pubmed
pubmed-article:19199266pubmed:articleTitleA prediction model for breast cancer recurrence after adjuvant hormone therapy.lld:pubmed
pubmed-article:19199266pubmed:affiliationIstituto di Statistica Medica e Biometria, Universita' degli Studi di Milano, Milan, Italy. elia.biganzoli@istitutotumori.mi.itlld:pubmed
pubmed-article:19199266pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19199266pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed