Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19170188rdf:typepubmed:Citationlld:pubmed
pubmed-article:19170188lifeskim:mentionsumls-concept:C0027836lld:lifeskim
pubmed-article:19170188lifeskim:mentionsumls-concept:C0596901lld:lifeskim
pubmed-article:19170188lifeskim:mentionsumls-concept:C0018296lld:lifeskim
pubmed-article:19170188lifeskim:mentionsumls-concept:C0300824lld:lifeskim
pubmed-article:19170188lifeskim:mentionsumls-concept:C1419206lld:lifeskim
pubmed-article:19170188lifeskim:mentionsumls-concept:C1420271lld:lifeskim
pubmed-article:19170188lifeskim:mentionsumls-concept:C0599896lld:lifeskim
pubmed-article:19170188pubmed:issue15lld:pubmed
pubmed-article:19170188pubmed:dateCreated2009-10-12lld:pubmed
pubmed-article:19170188pubmed:abstractTextDuring myelin formation, vast amounts of specialized membrane proteins and lipids are trafficked toward the growing sheath in cell surface-directed transport vesicles. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment proteins (SNAPs) are important components of molecular complexes required for membrane fusion. We have analyzed the expression profile and molecular interactions of SNAP-29 in the nervous system. In addition to its known enrichment in neuronal synapses, SNAP-29 is abundant in oligodendrocytes during myelination and in noncompact myelin of the peripheral nervous system. By yeast two-hybrid screen and coimmunoprecipitation, we found that the GTPases Rab3A, Rab24, and septin 4 bind to the N-terminal domain of SNAP-29. The interaction with Rab24 or septin 4 was GTP independent. In contrast, interaction between SNAP-29 and Rab3A was GTP dependent, and colocalization was extensive both in synapses and in myelinating glia. In HEK293 cells, cytoplasmic SNAP-29 pools were redistributed upon coexpression with Rab3A, and surface-directed trafficking of myelin proteolipid protein was enhanced by overexpression of SNAP-29 and Rab3A. Interestingly, the abundance of SNAP-29 in sciatic nerves was increased during remyelination and in a rat model of Charcot-Marie-Tooth disease, two pathological situations with increased myelin membrane biogenesis. We suggest that Rab3A may regulate SNAP-29-mediated membrane fusion during myelination.lld:pubmed
pubmed-article:19170188pubmed:languageenglld:pubmed
pubmed-article:19170188pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:citationSubsetIMlld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19170188pubmed:statusMEDLINElld:pubmed
pubmed-article:19170188pubmed:monthNovlld:pubmed
pubmed-article:19170188pubmed:issn1097-4547lld:pubmed
pubmed-article:19170188pubmed:authorpubmed-author:NaveKlaus-Arm...lld:pubmed
pubmed-article:19170188pubmed:authorpubmed-author:SeredaMichael...lld:pubmed
pubmed-article:19170188pubmed:authorpubmed-author:BrinkmannBast...lld:pubmed
pubmed-article:19170188pubmed:authorpubmed-author:SchardtAnkeAlld:pubmed
pubmed-article:19170188pubmed:authorpubmed-author:WernerHauke...lld:pubmed
pubmed-article:19170188pubmed:authorpubmed-author:MitkovskiMiso...lld:pubmed
pubmed-article:19170188pubmed:issnTypeElectroniclld:pubmed
pubmed-article:19170188pubmed:day15lld:pubmed
pubmed-article:19170188pubmed:volume87lld:pubmed
pubmed-article:19170188pubmed:ownerNLMlld:pubmed
pubmed-article:19170188pubmed:authorsCompleteYlld:pubmed
pubmed-article:19170188pubmed:pagination3465-79lld:pubmed
pubmed-article:19170188pubmed:dateRevised2010-11-18lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:meshHeadingpubmed-meshheading:19170188...lld:pubmed
pubmed-article:19170188pubmed:year2009lld:pubmed
pubmed-article:19170188pubmed:articleTitleThe SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia.lld:pubmed
pubmed-article:19170188pubmed:affiliationDepartment of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany.lld:pubmed
pubmed-article:19170188pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19170188pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
entrez-gene:19339entrezgene:pubmedpubmed-article:19170188lld:entrezgene
entrez-gene:67474entrezgene:pubmedpubmed-article:19170188lld:entrezgene
http://linkedlifedata.com/r...entrezgene:pubmedpubmed-article:19170188lld:entrezgene
http://linkedlifedata.com/r...entrezgene:pubmedpubmed-article:19170188lld:entrezgene
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:19170188lld:pubmed