Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:19018707rdf:typepubmed:Citationlld:pubmed
pubmed-article:19018707lifeskim:mentionsumls-concept:C0025663lld:lifeskim
pubmed-article:19018707lifeskim:mentionsumls-concept:C0086022lld:lifeskim
pubmed-article:19018707lifeskim:mentionsumls-concept:C0542569lld:lifeskim
pubmed-article:19018707lifeskim:mentionsumls-concept:C1705099lld:lifeskim
pubmed-article:19018707lifeskim:mentionsumls-concept:C0442335lld:lifeskim
pubmed-article:19018707lifeskim:mentionsumls-concept:C1521738lld:lifeskim
pubmed-article:19018707pubmed:issue5lld:pubmed
pubmed-article:19018707pubmed:dateCreated2009-8-31lld:pubmed
pubmed-article:19018707pubmed:abstractTextNewton's method for solving the matrix equation F(X) identical to AX-XX(T) AX = 0 runs up against the fact that its zeros are not isolated. This is due to a symmetry of F by the action of the orthogonal group. We show how differential-geometric techniques can be exploited to remove this symmetry and obtain a "geometric" Newton algorithm that finds the zeros of F. The geometric Newton method does not suffer from the degeneracy issue that stands in the way of the original Newton method.lld:pubmed
pubmed-article:19018707pubmed:languageenglld:pubmed
pubmed-article:19018707pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:19018707pubmed:citationSubsetIMlld:pubmed
pubmed-article:19018707pubmed:statusMEDLINElld:pubmed
pubmed-article:19018707pubmed:monthMaylld:pubmed
pubmed-article:19018707pubmed:issn0899-7667lld:pubmed
pubmed-article:19018707pubmed:authorpubmed-author:Van HuffelSSlld:pubmed
pubmed-article:19018707pubmed:authorpubmed-author:De...lld:pubmed
pubmed-article:19018707pubmed:authorpubmed-author:AbsilP APAlld:pubmed
pubmed-article:19018707pubmed:authorpubmed-author:IshtevaMMlld:pubmed
pubmed-article:19018707pubmed:issnTypePrintlld:pubmed
pubmed-article:19018707pubmed:volume21lld:pubmed
pubmed-article:19018707pubmed:ownerNLMlld:pubmed
pubmed-article:19018707pubmed:authorsCompleteYlld:pubmed
pubmed-article:19018707pubmed:pagination1415-33lld:pubmed
pubmed-article:19018707pubmed:meshHeadingpubmed-meshheading:19018707...lld:pubmed
pubmed-article:19018707pubmed:meshHeadingpubmed-meshheading:19018707...lld:pubmed
pubmed-article:19018707pubmed:meshHeadingpubmed-meshheading:19018707...lld:pubmed
pubmed-article:19018707pubmed:meshHeadingpubmed-meshheading:19018707...lld:pubmed
pubmed-article:19018707pubmed:meshHeadingpubmed-meshheading:19018707...lld:pubmed
pubmed-article:19018707pubmed:year2009lld:pubmed
pubmed-article:19018707pubmed:articleTitleA geometric Newton method for Oja's vector field.lld:pubmed
pubmed-article:19018707pubmed:affiliationDepartment of Mathematical Engineering, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium. absil@inma.ucl.ac.belld:pubmed
pubmed-article:19018707pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:19018707pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed