pubmed-article:19018707 | pubmed:abstractText | Newton's method for solving the matrix equation F(X) identical to AX-XX(T) AX = 0 runs up against the fact that its zeros are not isolated. This is due to a symmetry of F by the action of the orthogonal group. We show how differential-geometric techniques can be exploited to remove this symmetry and obtain a "geometric" Newton algorithm that finds the zeros of F. The geometric Newton method does not suffer from the degeneracy issue that stands in the way of the original Newton method. | lld:pubmed |