Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18550162rdf:typepubmed:Citationlld:pubmed
pubmed-article:18550162lifeskim:mentionsumls-concept:C0034493lld:lifeskim
pubmed-article:18550162lifeskim:mentionsumls-concept:C1179873lld:lifeskim
pubmed-article:18550162lifeskim:mentionsumls-concept:C0542341lld:lifeskim
pubmed-article:18550162lifeskim:mentionsumls-concept:C0205359lld:lifeskim
pubmed-article:18550162lifeskim:mentionsumls-concept:C0376249lld:lifeskim
pubmed-article:18550162pubmed:issue6lld:pubmed
pubmed-article:18550162pubmed:dateCreated2008-11-10lld:pubmed
pubmed-article:18550162pubmed:abstractTextSpontaneous Ca(2+) release from the sarcoplasmic reticulum (SR) appears to play an important role in cardiac sinoatrial node pacemaking. However, comparatively little is known about the role of intracellular Ca(2+) in the atrioventricular node (AVN). Intracellular Ca(2+) was therefore monitored in cells isolated from the rabbit AVN, using fluo-3 in conjunction with confocal microscopy. These cells displayed spontaneous Ca(2+) transients and action potentials. Ca(2+) transients were normally preceded by a small, slow increase (ramp) of intracellular Ca(2+) which was sometimes, but not always, accompanied by Ca(2+) sparks. During the Ca(2+) transient, intracellular [Ca(2+)] increased initially at the cell periphery and propagated inhomogeneously to the cell centre. The rate of spontaneous activity was decreased by ryanodine (1muM) and increased by isoprenaline (500nM); these changes were accompanied by a decrease and increase, respectively, in the slope of the preceding Ca(2+) ramp, with no significant change in Ca(2+) spark characteristics. Rapidly reducing bathing [Na(+)] inhibited spontaneous activity. These findings provide the first information on Ca(2+) handling at the sub-cellular level and link cellular Ca(2+) cycling to the genesis of spontaneous activity in the AVN.lld:pubmed
pubmed-article:18550162pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18550162pubmed:languageenglld:pubmed
pubmed-article:18550162pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18550162pubmed:citationSubsetIMlld:pubmed
pubmed-article:18550162pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18550162pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18550162pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18550162pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18550162pubmed:statusMEDLINElld:pubmed
pubmed-article:18550162pubmed:monthDeclld:pubmed
pubmed-article:18550162pubmed:issn1532-1991lld:pubmed
pubmed-article:18550162pubmed:authorpubmed-author:SmithG LGLlld:pubmed
pubmed-article:18550162pubmed:authorpubmed-author:JonesS KSKlld:pubmed
pubmed-article:18550162pubmed:authorpubmed-author:ChengHHlld:pubmed
pubmed-article:18550162pubmed:authorpubmed-author:OrchardC HCHlld:pubmed
pubmed-article:18550162pubmed:authorpubmed-author:RidleyJ MJMlld:pubmed
pubmed-article:18550162pubmed:authorpubmed-author:HancoxJ CJClld:pubmed
pubmed-article:18550162pubmed:authorpubmed-author:HarrisonO JOJlld:pubmed
pubmed-article:18550162pubmed:issnTypeElectroniclld:pubmed
pubmed-article:18550162pubmed:volume44lld:pubmed
pubmed-article:18550162pubmed:ownerNLMlld:pubmed
pubmed-article:18550162pubmed:authorsCompleteYlld:pubmed
pubmed-article:18550162pubmed:pagination580-91lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:meshHeadingpubmed-meshheading:18550162...lld:pubmed
pubmed-article:18550162pubmed:year2008lld:pubmed
pubmed-article:18550162pubmed:articleTitleSpontaneous frequency of rabbit atrioventricular node myocytes depends on SR function.lld:pubmed
pubmed-article:18550162pubmed:affiliationDepartment of Physiology & Pharmacology, Cardiovascular Research Laboratories, Bristol Heart Institute, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK.lld:pubmed
pubmed-article:18550162pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:18550162pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:18550162lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:18550162lld:pubmed