pubmed-article:18537948 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:18537948 | lifeskim:mentions | umls-concept:C0026336 | lld:lifeskim |
pubmed-article:18537948 | lifeskim:mentions | umls-concept:C0040223 | lld:lifeskim |
pubmed-article:18537948 | lifeskim:mentions | umls-concept:C0231174 | lld:lifeskim |
pubmed-article:18537948 | lifeskim:mentions | umls-concept:C0936012 | lld:lifeskim |
pubmed-article:18537948 | pubmed:issue | 1 | lld:pubmed |
pubmed-article:18537948 | pubmed:dateCreated | 2009-4-1 | lld:pubmed |
pubmed-article:18537948 | pubmed:abstractText | In a case-cohort design, covariates are assembled only for a subcohort that is randomly selected from the entire cohort and any additional cases outside the subcohort. This design is appealing for large cohort studies of rare disease, especially when the exposures of interest are expensive to ascertain for all the subjects. We propose statistical methods for analyzing the case-cohort data with a semiparametric accelerated failure time model that interprets the covariates effects as to accelerate or decelerate the time to failure. Asymptotic properties of the proposed estimators are developed. The finite sample properties of case-cohort estimator and its relative efficiency to full cohort estimator are assessed via simulation studies. A real example from a study of cardiovascular disease is provided to illustrate the estimating procedure. | lld:pubmed |
pubmed-article:18537948 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18537948 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18537948 | pubmed:language | eng | lld:pubmed |
pubmed-article:18537948 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18537948 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:18537948 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:18537948 | pubmed:month | Mar | lld:pubmed |
pubmed-article:18537948 | pubmed:issn | 1541-0420 | lld:pubmed |
pubmed-article:18537948 | pubmed:author | pubmed-author:CaiJianwenJ | lld:pubmed |
pubmed-article:18537948 | pubmed:author | pubmed-author:KongLanL | lld:pubmed |
pubmed-article:18537948 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:18537948 | pubmed:volume | 65 | lld:pubmed |
pubmed-article:18537948 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:18537948 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:18537948 | pubmed:pagination | 135-42 | lld:pubmed |
pubmed-article:18537948 | pubmed:dateRevised | 2011-9-26 | lld:pubmed |
pubmed-article:18537948 | pubmed:meshHeading | pubmed-meshheading:18537948... | lld:pubmed |
pubmed-article:18537948 | pubmed:meshHeading | pubmed-meshheading:18537948... | lld:pubmed |
pubmed-article:18537948 | pubmed:meshHeading | pubmed-meshheading:18537948... | lld:pubmed |
pubmed-article:18537948 | pubmed:meshHeading | pubmed-meshheading:18537948... | lld:pubmed |
pubmed-article:18537948 | pubmed:meshHeading | pubmed-meshheading:18537948... | lld:pubmed |
pubmed-article:18537948 | pubmed:meshHeading | pubmed-meshheading:18537948... | lld:pubmed |
pubmed-article:18537948 | pubmed:year | 2009 | lld:pubmed |
pubmed-article:18537948 | pubmed:articleTitle | Case-cohort analysis with accelerated failure time model. | lld:pubmed |
pubmed-article:18537948 | pubmed:affiliation | Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA. lkong@pitt.edu | lld:pubmed |
pubmed-article:18537948 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:18537948 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:18537948 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |