Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:1849569rdf:typepubmed:Citationlld:pubmed
pubmed-article:1849569lifeskim:mentionsumls-concept:C0011923lld:lifeskim
pubmed-article:1849569lifeskim:mentionsumls-concept:C0057717lld:lifeskim
pubmed-article:1849569lifeskim:mentionsumls-concept:C0026019lld:lifeskim
pubmed-article:1849569lifeskim:mentionsumls-concept:C0205148lld:lifeskim
pubmed-article:1849569lifeskim:mentionsumls-concept:C0162691lld:lifeskim
pubmed-article:1849569lifeskim:mentionsumls-concept:C0040594lld:lifeskim
pubmed-article:1849569pubmed:issue2lld:pubmed
pubmed-article:1849569pubmed:dateCreated1991-5-10lld:pubmed
pubmed-article:1849569pubmed:abstractTextReflection electron microscopy (REM) is applied to image the structure of polished natural diamond (001) surfaces (of 5 x 4 mm size) after friction experiments under a pressure below the critical value. Friction tracks marked by a diamond needle after a single pass movement under a pressure of 13 GPa can be seen in REM images and show non-uniform contrast. The surface shows relatively dark image contrast at the light contacted area, which is possibly due to the structural modification at the top atomic layer. The high local contacting pressure pushes part of the needle into the surface which causes fracture, resulting in the formation of grooves at the surface. It is possible to have plastic deformation in this process, but no evidence has been found for the presence of cracking. The observations support the adhesion frictional mechanism rather than the micro-cleavage model.lld:pubmed
pubmed-article:1849569pubmed:languageenglld:pubmed
pubmed-article:1849569pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:1849569pubmed:citationSubsetIMlld:pubmed
pubmed-article:1849569pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:1849569pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:1849569pubmed:statusMEDLINElld:pubmed
pubmed-article:1849569pubmed:monthFeblld:pubmed
pubmed-article:1849569pubmed:issn0741-0581lld:pubmed
pubmed-article:1849569pubmed:authorpubmed-author:WangZ LZLlld:pubmed
pubmed-article:1849569pubmed:issnTypePrintlld:pubmed
pubmed-article:1849569pubmed:volume17lld:pubmed
pubmed-article:1849569pubmed:ownerNLMlld:pubmed
pubmed-article:1849569pubmed:authorsCompleteYlld:pubmed
pubmed-article:1849569pubmed:pagination231-40lld:pubmed
pubmed-article:1849569pubmed:dateRevised2000-12-18lld:pubmed
pubmed-article:1849569pubmed:meshHeadingpubmed-meshheading:1849569-...lld:pubmed
pubmed-article:1849569pubmed:meshHeadingpubmed-meshheading:1849569-...lld:pubmed
pubmed-article:1849569pubmed:meshHeadingpubmed-meshheading:1849569-...lld:pubmed
pubmed-article:1849569pubmed:meshHeadingpubmed-meshheading:1849569-...lld:pubmed
pubmed-article:1849569pubmed:year1991lld:pubmed
pubmed-article:1849569pubmed:articleTitleImaging friction tracks at diamond surfaces using reflection electron microscopy.lld:pubmed
pubmed-article:1849569pubmed:affiliationDepartment of Physics, Arizona State University, Tempe 85287-1504.lld:pubmed
pubmed-article:1849569pubmed:publicationTypeJournal Articlelld:pubmed