Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18390362rdf:typepubmed:Citationlld:pubmed
pubmed-article:18390362lifeskim:mentionsumls-concept:C0002045lld:lifeskim
pubmed-article:18390362lifeskim:mentionsumls-concept:C1707643lld:lifeskim
pubmed-article:18390362lifeskim:mentionsumls-concept:C0456962lld:lifeskim
pubmed-article:18390362lifeskim:mentionsumls-concept:C2347299lld:lifeskim
pubmed-article:18390362pubmed:issue4lld:pubmed
pubmed-article:18390362pubmed:dateCreated2008-4-8lld:pubmed
pubmed-article:18390362pubmed:abstractTextWe present a fast variational deconvolution algorithm that minimizes a quadratic data term subject to a regularization on the l(1)-norm of the wavelet coefficients of the solution. Previously available methods have essentially consisted in alternating between a Landweber iteration and a wavelet-domain soft-thresholding operation. While having the advantage of simplicity, they are known to converge slowly. By expressing the cost functional in a Shannon wavelet basis, we are able to decompose the problem into a series of subband-dependent minimizations. In particular, this allows for larger (subband-dependent) step sizes and threshold levels than the previous method. This improves the convergence properties of the algorithm significantly. We demonstrate a speed-up of one order of magnitude in practical situations. This makes wavelet-regularized deconvolution more widely accessible, even for applications with a strong limitation on computational complexity. We present promising results in 3-D deconvolution microscopy, where the size of typical data sets does not permit more than a few tens of iterations.lld:pubmed
pubmed-article:18390362pubmed:languageenglld:pubmed
pubmed-article:18390362pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18390362pubmed:citationSubsetIMlld:pubmed
pubmed-article:18390362pubmed:statusMEDLINElld:pubmed
pubmed-article:18390362pubmed:monthAprlld:pubmed
pubmed-article:18390362pubmed:issn1057-7149lld:pubmed
pubmed-article:18390362pubmed:authorpubmed-author:UnserMMlld:pubmed
pubmed-article:18390362pubmed:authorpubmed-author:VoneschCClld:pubmed
pubmed-article:18390362pubmed:issnTypePrintlld:pubmed
pubmed-article:18390362pubmed:volume17lld:pubmed
pubmed-article:18390362pubmed:ownerNLMlld:pubmed
pubmed-article:18390362pubmed:authorsCompleteYlld:pubmed
pubmed-article:18390362pubmed:pagination539-49lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:meshHeadingpubmed-meshheading:18390362...lld:pubmed
pubmed-article:18390362pubmed:year2008lld:pubmed
pubmed-article:18390362pubmed:articleTitleA fast thresholded landweber algorithm for wavelet-regularized multidimensional deconvolution.lld:pubmed
pubmed-article:18390362pubmed:affiliationBiomedical Imaging Group, Lausanne, Switzerland. cedric.vonesch@epfl.chlld:pubmed
pubmed-article:18390362pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:18390362pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:18390362lld:pubmed