pubmed-article:18269259 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:18269259 | lifeskim:mentions | umls-concept:C0030015 | lld:lifeskim |
pubmed-article:18269259 | lifeskim:mentions | umls-concept:C0086296 | lld:lifeskim |
pubmed-article:18269259 | lifeskim:mentions | umls-concept:C1720846 | lld:lifeskim |
pubmed-article:18269259 | lifeskim:mentions | umls-concept:C0205250 | lld:lifeskim |
pubmed-article:18269259 | lifeskim:mentions | umls-concept:C0449774 | lld:lifeskim |
pubmed-article:18269259 | lifeskim:mentions | umls-concept:C1706765 | lld:lifeskim |
pubmed-article:18269259 | pubmed:issue | 2 | lld:pubmed |
pubmed-article:18269259 | pubmed:dateCreated | 2008-2-14 | lld:pubmed |
pubmed-article:18269259 | pubmed:abstractText | One of the central challenges of nanoscience is fabrication of nanoscale structures with well-controlled architectures using planar thin-film technology. Herein, we report that ordered nanocheckerboards in ZnMnGaO4 films were grown epitaxially on single-crystal MgO substrates by utilizing a solid-state method of the phase separation-induced self-assembly. The films consist of two types of chemically distinct and regularly spaced nanorods with mutually coherent interfaces, approximately 4 x 4 x 750 nm3 in size and perfectly aligned along the film growth direction. Surprisingly, a significant in-plane strain, more than 2%, from the substrate is globally maintained over the entire film thickness of about 820 nm. The strain energy from Jahn-Teller distortions and the film-substrate lattice mismatch induce the coherent three-dimensional (3D) self-assembled nanostructure, relieving the volume strain energy while suppressing the formation of dislocations. | lld:pubmed |
pubmed-article:18269259 | pubmed:language | eng | lld:pubmed |
pubmed-article:18269259 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18269259 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:18269259 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18269259 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18269259 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:18269259 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:18269259 | pubmed:month | Feb | lld:pubmed |
pubmed-article:18269259 | pubmed:issn | 1530-6984 | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:LeeNN | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:AsadaTT | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:TanimuraMM | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:ParkSS | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:GustafssonTT | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:HoribeYY | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:SirenkoA AAA | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:O'MalleyS MSM | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:KazimirovAA | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:CheongS-WSW | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:WielunskiL... | lld:pubmed |
pubmed-article:18269259 | pubmed:author | pubmed-author:BonannoP LPL | lld:pubmed |
pubmed-article:18269259 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:18269259 | pubmed:volume | 8 | lld:pubmed |
pubmed-article:18269259 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:18269259 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:18269259 | pubmed:pagination | 720-4 | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:meshHeading | pubmed-meshheading:18269259... | lld:pubmed |
pubmed-article:18269259 | pubmed:year | 2008 | lld:pubmed |
pubmed-article:18269259 | pubmed:articleTitle | Highly aligned epitaxial nanorods with a checkerboard pattern in oxide films. | lld:pubmed |
pubmed-article:18269259 | pubmed:affiliation | Rutgers Center for Emergent Materials, Rutgers University, Piscataway, New Jersey 08854, USA. floura@physics.rutgers.edu | lld:pubmed |
pubmed-article:18269259 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:18269259 | pubmed:publicationType | Research Support, U.S. Gov't, Non-P.H.S. | lld:pubmed |
pubmed-article:18269259 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |