Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18267516rdf:typepubmed:Citationlld:pubmed
pubmed-article:18267516lifeskim:mentionsumls-concept:C0376522lld:lifeskim
pubmed-article:18267516lifeskim:mentionsumls-concept:C1257973lld:lifeskim
pubmed-article:18267516lifeskim:mentionsumls-concept:C0009219lld:lifeskim
pubmed-article:18267516lifeskim:mentionsumls-concept:C0600653lld:lifeskim
pubmed-article:18267516lifeskim:mentionsumls-concept:C1701901lld:lifeskim
pubmed-article:18267516pubmed:issue8lld:pubmed
pubmed-article:18267516pubmed:dateCreated2008-2-12lld:pubmed
pubmed-article:18267516pubmed:abstractTextBlock sizes of practical vector quantization (VQ) image coders are not large enough to exploit all high-order statistical dependencies among pixels. Therefore, adaptive entropy coding of VQ indexes via statistical context modeling can significantly reduce the bit rate of VQ coders for given distortion. Address VQ was a pioneer work in this direction. In this paper we develop a framework of conditional entropy coding of VQ indexes (CECOVI) based on a simple Bayesian-type method of estimating probabilities conditioned on causal contexts, CECOVI is conceptually cleaner and algorithmically more efficient than address VQ, with address-VQ technique being its special case. It reduces the bit rate of address VQ by more than 20% for the same distortion, and does so at only a tiny fraction of address VQ's computational cost.lld:pubmed
pubmed-article:18267516pubmed:languageenglld:pubmed
pubmed-article:18267516pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18267516pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:18267516pubmed:issn1057-7149lld:pubmed
pubmed-article:18267516pubmed:authorpubmed-author:WongW HWHlld:pubmed
pubmed-article:18267516pubmed:authorpubmed-author:WenJJlld:pubmed
pubmed-article:18267516pubmed:authorpubmed-author:JogN VNVlld:pubmed
pubmed-article:18267516pubmed:issnTypePrintlld:pubmed
pubmed-article:18267516pubmed:volume8lld:pubmed
pubmed-article:18267516pubmed:ownerNLMlld:pubmed
pubmed-article:18267516pubmed:authorsCompleteYlld:pubmed
pubmed-article:18267516pubmed:pagination1005-13lld:pubmed
pubmed-article:18267516pubmed:year1999lld:pubmed
pubmed-article:18267516pubmed:articleTitleConditional entropy coding of VQ indexes for image compression.lld:pubmed
pubmed-article:18267516pubmed:affiliationDept. of Comput. Sci., Univ. of Western Ontario, London, Ont., Canada. xiaolin@ntec-media.delld:pubmed
pubmed-article:18267516pubmed:publicationTypeJournal Articlelld:pubmed