Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18061923rdf:typepubmed:Citationlld:pubmed
pubmed-article:18061923lifeskim:mentionsumls-concept:C1261552lld:lifeskim
pubmed-article:18061923lifeskim:mentionsumls-concept:C0044554lld:lifeskim
pubmed-article:18061923pubmed:issue6lld:pubmed
pubmed-article:18061923pubmed:dateCreated2008-2-18lld:pubmed
pubmed-article:18061923pubmed:abstractTextThe rate-determining step in the hydroformylation of 1-octene, catalysed by the rhodium-Xantphos catalyst system, was determined by using a combination of experimentally determined (1)H/(2)H and (12)C/(13)C kinetic isotope effects and a theoretical approach. From the rates of hydroformylation and deuterioformylation, a small (1)H/(2)H isotope effect of 1.2 was determined for the hydride moiety of the rhodium catalyst. (12)C/(13)C isotope effects of 1.012(1) and 1.012(3) for the alpha-carbon and beta-carbon atoms of 1-octene were determined, respectively. Both quantum mechanics/molecular mechanics (QM/MM) and full quantum mechanics calculations were carried out on the key catalytic steps, for "real-world" ligand systems, to clarify whether alkene coordination or hydride migration is the rate-determining step. Our calculations (21.4 kcal mol(-1)) quantitatively reproduce the experimental energy barrier for CO dissociation (20.1 kcal mol(-1)) starting at the (bisphosphane)RhH(CO)(2) resting state. The barrier for hydride migration lies 3.8 kcal mol(-1) higher than the barrier for CO dissociation (experimentally determined trend approximately 3 kcal mol(-1)). The computed (1)H/(2)H and (12)C/(13)C kinetic isotope effects corroborate the results of the energy analysis.lld:pubmed
pubmed-article:18061923pubmed:languageenglld:pubmed
pubmed-article:18061923pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18061923pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:18061923pubmed:issn0947-6539lld:pubmed
pubmed-article:18061923pubmed:authorpubmed-author:KamerPaul C...lld:pubmed
pubmed-article:18061923pubmed:authorpubmed-author:van...lld:pubmed
pubmed-article:18061923pubmed:authorpubmed-author:BoCarlesClld:pubmed
pubmed-article:18061923pubmed:authorpubmed-author:CarbóJorge...lld:pubmed
pubmed-article:18061923pubmed:authorpubmed-author:EichelsheimTa...lld:pubmed
pubmed-article:18061923pubmed:authorpubmed-author:ZuidemaErikElld:pubmed
pubmed-article:18061923pubmed:authorpubmed-author:EscorihuelaLa...lld:pubmed
pubmed-article:18061923pubmed:issnTypePrintlld:pubmed
pubmed-article:18061923pubmed:volume14lld:pubmed
pubmed-article:18061923pubmed:ownerNLMlld:pubmed
pubmed-article:18061923pubmed:authorsCompleteYlld:pubmed
pubmed-article:18061923pubmed:pagination1843-53lld:pubmed
pubmed-article:18061923pubmed:dateRevised2009-8-4lld:pubmed
pubmed-article:18061923pubmed:year2008lld:pubmed
pubmed-article:18061923pubmed:articleTitleThe rate-determining step in the rhodium-xantphos-catalysed hydroformylation of 1-octene.lld:pubmed
pubmed-article:18061923pubmed:affiliationVan't Hoff Institute for Molecular Sciences, Universiteit van Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam,, The Netherlands.lld:pubmed
pubmed-article:18061923pubmed:publicationTypeJournal Articlelld:pubmed