Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18048187rdf:typepubmed:Citationlld:pubmed
pubmed-article:18048187lifeskim:mentionsumls-concept:C0043393lld:lifeskim
pubmed-article:18048187lifeskim:mentionsumls-concept:C0017337lld:lifeskim
pubmed-article:18048187lifeskim:mentionsumls-concept:C0205245lld:lifeskim
pubmed-article:18048187lifeskim:mentionsumls-concept:C0023745lld:lifeskim
pubmed-article:18048187lifeskim:mentionsumls-concept:C1511726lld:lifeskim
pubmed-article:18048187lifeskim:mentionsumls-concept:C1709016lld:lifeskim
pubmed-article:18048187pubmed:issue2lld:pubmed
pubmed-article:18048187pubmed:dateCreated2007-11-30lld:pubmed
pubmed-article:18048187pubmed:abstractTextUnderstanding how genes are functionally related requires efficient algorithms to model networks from expression data. We report a heuristic search algorithm called Two-Level Simulated Annealing (TLSA) that is more likely to find the global optimal network structure compared to conventional simulated annealing and other searching schemes. We have applied this method to search for a global optimised network structure from a synthetic data set and an expression data set of S. cerevisiae mutants. We have achieved better precision and recall compared to other searching algorithms and are able to map relationships more accurately among functionally-linked genes.lld:pubmed
pubmed-article:18048187pubmed:languageenglld:pubmed
pubmed-article:18048187pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18048187pubmed:citationSubsetIMlld:pubmed
pubmed-article:18048187pubmed:statusMEDLINElld:pubmed
pubmed-article:18048187pubmed:issn1744-5485lld:pubmed
pubmed-article:18048187pubmed:authorpubmed-author:WaddW BWBlld:pubmed
pubmed-article:18048187pubmed:authorpubmed-author:TouchmanJeffr...lld:pubmed
pubmed-article:18048187pubmed:authorpubmed-author:XueGuoliangGlld:pubmed
pubmed-article:18048187pubmed:issnTypePrintlld:pubmed
pubmed-article:18048187pubmed:volume3lld:pubmed
pubmed-article:18048187pubmed:ownerNLMlld:pubmed
pubmed-article:18048187pubmed:authorsCompleteYlld:pubmed
pubmed-article:18048187pubmed:pagination170-86lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:meshHeadingpubmed-meshheading:18048187...lld:pubmed
pubmed-article:18048187pubmed:year2007lld:pubmed
pubmed-article:18048187pubmed:articleTitleModelling gene functional linkages using yeast microarray data.lld:pubmed
pubmed-article:18048187pubmed:affiliationDepartment of Computer Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA. tie.wang@asu.edulld:pubmed
pubmed-article:18048187pubmed:publicationTypeJournal Articlelld:pubmed