Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:18002300rdf:typepubmed:Citationlld:pubmed
pubmed-article:18002300lifeskim:mentionsumls-concept:C0019010lld:lifeskim
pubmed-article:18002300lifeskim:mentionsumls-concept:C0185115lld:lifeskim
pubmed-article:18002300lifeskim:mentionsumls-concept:C1511790lld:lifeskim
pubmed-article:18002300lifeskim:mentionsumls-concept:C1710082lld:lifeskim
pubmed-article:18002300lifeskim:mentionsumls-concept:C0002045lld:lifeskim
pubmed-article:18002300lifeskim:mentionsumls-concept:C2348519lld:lifeskim
pubmed-article:18002300pubmed:dateCreated2007-11-16lld:pubmed
pubmed-article:18002300pubmed:abstractTextSpecific features of hemodynamic signals are invaluable for elucidating ventricular and vascular function. A semi-automatic algorithm is presented that enables accurate detection of any feature in any hemodynamic signal, using feature extraction from local maxima and minima in signal curvature. A particular feature is selected manually in the first beat and then detected automatically in subsequent beats.lld:pubmed
pubmed-article:18002300pubmed:languageenglld:pubmed
pubmed-article:18002300pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:18002300pubmed:citationSubsetIMlld:pubmed
pubmed-article:18002300pubmed:statusMEDLINElld:pubmed
pubmed-article:18002300pubmed:issn1557-170Xlld:pubmed
pubmed-article:18002300pubmed:authorpubmed-author:SmolichJoseph...lld:pubmed
pubmed-article:18002300pubmed:authorpubmed-author:PennyDaniel...lld:pubmed
pubmed-article:18002300pubmed:authorpubmed-author:MynardJonatha...lld:pubmed
pubmed-article:18002300pubmed:issnTypePrintlld:pubmed
pubmed-article:18002300pubmed:volume2007lld:pubmed
pubmed-article:18002300pubmed:ownerNLMlld:pubmed
pubmed-article:18002300pubmed:authorsCompleteYlld:pubmed
pubmed-article:18002300pubmed:pagination1691-4lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:meshHeadingpubmed-meshheading:18002300...lld:pubmed
pubmed-article:18002300pubmed:year2007lld:pubmed
pubmed-article:18002300pubmed:articleTitleA semi-automatic feature detection algorithm for hemodynamic signals using curvature-based feature extraction.lld:pubmed
pubmed-article:18002300pubmed:affiliationHeart Research Group, Murdoch Children's Research Institute, Melbourne, Australia. jonathan.mynard@mcri.edu.aulld:pubmed
pubmed-article:18002300pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:18002300pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed