pubmed-article:17946126 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:17946126 | lifeskim:mentions | umls-concept:C0225326 | lld:lifeskim |
pubmed-article:17946126 | lifeskim:mentions | umls-concept:C1511726 | lld:lifeskim |
pubmed-article:17946126 | lifeskim:mentions | umls-concept:C0012222 | lld:lifeskim |
pubmed-article:17946126 | lifeskim:mentions | umls-concept:C0449445 | lld:lifeskim |
pubmed-article:17946126 | pubmed:dateCreated | 2007-10-23 | lld:pubmed |
pubmed-article:17946126 | pubmed:abstractText | This paper describes a novel user-guided method for grouping fibers from diffusion tensor MRI tractography into bundles. The method finds fibers, that passing through user-defined ROIs, still fit to the underlying data model given by the diffusion tensor. This is achieved by filtering the data and the ROIs with a kernel derived from a geodesic metric between tensors. A standard approach using binary decisions defining tracts passing through ROIs is critically dependent on ROIs that includes all trace lines of interest. The method described in this paper uses a softer decision mechanism through a kernel which enables grouping of bundles driven less exact, or even single point, ROIs. The method analyzes the responses obtained from the convolution with a kernel function along the fiber with the ROI data. Results in real data shows the feasibility of the approach to fiber bundling. | lld:pubmed |
pubmed-article:17946126 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:language | eng | lld:pubmed |
pubmed-article:17946126 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17946126 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:17946126 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:17946126 | pubmed:issn | 1557-170X | lld:pubmed |
pubmed-article:17946126 | pubmed:author | pubmed-author:WestinCarl-Fr... | lld:pubmed |
pubmed-article:17946126 | pubmed:author | pubmed-author:KubickiMarekM | lld:pubmed |
pubmed-article:17946126 | pubmed:author | pubmed-author:ShentonMartha... | lld:pubmed |
pubmed-article:17946126 | pubmed:author | pubmed-author:San José... | lld:pubmed |
pubmed-article:17946126 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:17946126 | pubmed:volume | 1 | lld:pubmed |
pubmed-article:17946126 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:17946126 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:17946126 | pubmed:pagination | 2626-9 | lld:pubmed |
pubmed-article:17946126 | pubmed:dateRevised | 2010-12-3 | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:meshHeading | pubmed-meshheading:17946126... | lld:pubmed |
pubmed-article:17946126 | pubmed:year | 2006 | lld:pubmed |
pubmed-article:17946126 | pubmed:articleTitle | A kernel-based approach for user-guided fiber bundling using diffusion tensor data. | lld:pubmed |
pubmed-article:17946126 | pubmed:affiliation | Lab. of Math. in Imaging, Brigham & Women's Hosp., Boston, MA, USA. rjosest@bwh.harvard.edu | lld:pubmed |
pubmed-article:17946126 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:17946126 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:17946126 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |