Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17899106rdf:typepubmed:Citationlld:pubmed
pubmed-article:17899106lifeskim:mentionsumls-concept:C0262613lld:lifeskim
pubmed-article:17899106lifeskim:mentionsumls-concept:C0008902lld:lifeskim
pubmed-article:17899106lifeskim:mentionsumls-concept:C1521733lld:lifeskim
pubmed-article:17899106lifeskim:mentionsumls-concept:C1707520lld:lifeskim
pubmed-article:17899106pubmed:issue2lld:pubmed
pubmed-article:17899106pubmed:dateCreated2008-2-4lld:pubmed
pubmed-article:17899106pubmed:abstractTextTo perform a feature analysis of malignant renal tumors evaluated with magnetic resonance (MR) imaging and to investigate the correlation between MR imaging features and histopathological findings. MR examinations in 79 malignant renal masses were retrospectively evaluated, and a feature analysis was performed. Each renal mass was assigned to one of eight categories from a proposed MRI classification system. The sensitivity and specificity of the MRI classification system to predict the histologic subtype and nuclear grade was calculated. Subvoxel fat on chemical shift imaging correlated to clear cell type (p < 0.05); sensitivity = 42%, specificity = 100%. Large size, intratumoral necrosis, retroperitoneal vascular collaterals, and renal vein thrombosis predicted high-grade clear cell type (p < 0.05). Small size, peripheral location, low intratumoral SI on T2-weighted images, and low-level enhancement were associated with low-grade papillary carcinomas (p < 0.05). The sensitivity and specificity of the MRI classification system for diagnosing low grade clear cell, high-grade clear cell, all clear cell, all papillary, and transitional carcinomas were 50% and 94%, 93% and 75%, 92% and 83%, 80% and 94%, and 100% and 99%, respectively. The MRI feature analysis and proposed classification system help predict the histological type and nuclear grade of renal masses.lld:pubmed
pubmed-article:17899106pubmed:languageenglld:pubmed
pubmed-article:17899106pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17899106pubmed:citationSubsetIMlld:pubmed
pubmed-article:17899106pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17899106pubmed:statusMEDLINElld:pubmed
pubmed-article:17899106pubmed:monthFeblld:pubmed
pubmed-article:17899106pubmed:issn0938-7994lld:pubmed
pubmed-article:17899106pubmed:authorpubmed-author:NiceWWlld:pubmed
pubmed-article:17899106pubmed:authorpubmed-author:DeWolfWilliam...lld:pubmed
pubmed-article:17899106pubmed:authorpubmed-author:RofskyNeil...lld:pubmed
pubmed-article:17899106pubmed:authorpubmed-author:GenegaElizabe...lld:pubmed
pubmed-article:17899106pubmed:authorpubmed-author:PedrosaIvanIlld:pubmed
pubmed-article:17899106pubmed:authorpubmed-author:ChouMary TMTlld:pubmed
pubmed-article:17899106pubmed:authorpubmed-author:H...lld:pubmed
pubmed-article:17899106pubmed:authorpubmed-author:GalaburdaLaur...lld:pubmed
pubmed-article:17899106pubmed:issnTypePrintlld:pubmed
pubmed-article:17899106pubmed:volume18lld:pubmed
pubmed-article:17899106pubmed:ownerNLMlld:pubmed
pubmed-article:17899106pubmed:authorsCompleteYlld:pubmed
pubmed-article:17899106pubmed:pagination365-75lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:meshHeadingpubmed-meshheading:17899106...lld:pubmed
pubmed-article:17899106pubmed:year2008lld:pubmed
pubmed-article:17899106pubmed:articleTitleMR classification of renal masses with pathologic correlation.lld:pubmed
pubmed-article:17899106pubmed:affiliationDepartment of Radiology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02118, USA. ipedrosa@bidmc.harvard.edulld:pubmed
pubmed-article:17899106pubmed:publicationTypeJournal Articlelld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17899106lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17899106lld:pubmed