Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17677736rdf:typepubmed:Citationlld:pubmed
pubmed-article:17677736lifeskim:mentionsumls-concept:C1705165lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C1514562lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C1883221lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C0205390lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C0024488lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C0563532lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C0086296lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C1704608lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C1883204lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C2700061lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C1880389lld:lifeskim
pubmed-article:17677736lifeskim:mentionsumls-concept:C1718271lld:lifeskim
pubmed-article:17677736pubmed:issue20lld:pubmed
pubmed-article:17677736pubmed:dateCreated2007-8-6lld:pubmed
pubmed-article:17677736pubmed:abstractTextMagnetic domain phases of ultrathin Fe/Ni/Cu(001) are studied using photoemission electron microscopy at the spin reorientation transition (SRT). We observe a new magnetic phase of bubble domains within a narrow SRT region after applying a nearly in-plane magnetic field pulse to the sample. By applying the magnetic field pulse along different directions, we find that the bubble domain phase exists only if the magnetic field direction is less than approximately 10 degrees relative to the sample surface. A temperature dependent measurement shows that the bubble domain phase becomes unstable above 370 K.lld:pubmed
pubmed-article:17677736pubmed:languageenglld:pubmed
pubmed-article:17677736pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17677736pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:17677736pubmed:monthMaylld:pubmed
pubmed-article:17677736pubmed:issn0031-9007lld:pubmed
pubmed-article:17677736pubmed:authorpubmed-author:WuJJlld:pubmed
pubmed-article:17677736pubmed:authorpubmed-author:ChoiJJlld:pubmed
pubmed-article:17677736pubmed:authorpubmed-author:SchollAAlld:pubmed
pubmed-article:17677736pubmed:authorpubmed-author:WooBBlld:pubmed
pubmed-article:17677736pubmed:authorpubmed-author:QinZ FZFlld:pubmed
pubmed-article:17677736pubmed:authorpubmed-author:OwensTTlld:pubmed
pubmed-article:17677736pubmed:authorpubmed-author:WuY ZYZlld:pubmed
pubmed-article:17677736pubmed:authorpubmed-author:DoranAAlld:pubmed
pubmed-article:17677736pubmed:issnTypePrintlld:pubmed
pubmed-article:17677736pubmed:day18lld:pubmed
pubmed-article:17677736pubmed:volume98lld:pubmed
pubmed-article:17677736pubmed:ownerNLMlld:pubmed
pubmed-article:17677736pubmed:authorsCompleteYlld:pubmed
pubmed-article:17677736pubmed:pagination207205lld:pubmed
pubmed-article:17677736pubmed:year2007lld:pubmed
pubmed-article:17677736pubmed:articleTitleMagnetic bubble domain phase at the spin reorientation transition of ultrathin Fe/Ni/Cu(001) film.lld:pubmed
pubmed-article:17677736pubmed:affiliationDepartment of Physics, University of California at Berkeley, Berkeley, California 94720, USA.lld:pubmed
pubmed-article:17677736pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17677736pubmed:publicationTypeResearch Support, U.S. Gov't, Non-P.H.S.lld:pubmed
pubmed-article:17677736pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed