pubmed-article:17633712 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:17633712 | lifeskim:mentions | umls-concept:C0682708 | lld:lifeskim |
pubmed-article:17633712 | lifeskim:mentions | umls-concept:C0024485 | lld:lifeskim |
pubmed-article:17633712 | lifeskim:mentions | umls-concept:C0012222 | lld:lifeskim |
pubmed-article:17633712 | lifeskim:mentions | umls-concept:C0449445 | lld:lifeskim |
pubmed-article:17633712 | lifeskim:mentions | umls-concept:C1707489 | lld:lifeskim |
pubmed-article:17633712 | pubmed:dateCreated | 2007-7-18 | lld:pubmed |
pubmed-article:17633712 | pubmed:abstractText | In this paper we present a volumetric approach for quantitatively studying white matter connectivity from diffusion tensor magnetic resonance imaging (DT-MRI). The proposed method is based on a minimization of path cost between two regions, defined as the integral of local costs that are derived from the full tensor data along the path. We solve the minimal path problem using a Hamilton-Jacobi formulation of the problem and a new, fast iterative method that computes updates on the propagating front of the cost function at every point. The solutions for the fronts emanating from the two initial regions are combined, giving a voxel-wise connectivity measurement of the optimal paths between the regions that pass through those voxels. The resulting high-connectivity voxels provide a volumetric representation of the white matter pathway between the terminal regions. We quantify the tensor data along these pathways using nonparametric regression of the tensors and of derived measures as a function of path length. In this way we can obtain volumetric measures on white-matter tracts between regions without any explicit integration of tracts. We demonstrate the proposed method on several fiber tracts from DT-MRI data of the normal human brain. | lld:pubmed |
pubmed-article:17633712 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17633712 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17633712 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17633712 | pubmed:language | eng | lld:pubmed |
pubmed-article:17633712 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17633712 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:17633712 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:17633712 | pubmed:issn | 1011-2499 | lld:pubmed |
pubmed-article:17633712 | pubmed:author | pubmed-author:SaeS WSW | lld:pubmed |
pubmed-article:17633712 | pubmed:author | pubmed-author:FletcherP... | lld:pubmed |
pubmed-article:17633712 | pubmed:author | pubmed-author:WhitakerRoss... | lld:pubmed |
pubmed-article:17633712 | pubmed:author | pubmed-author:JeongWon-KiWK | lld:pubmed |
pubmed-article:17633712 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:17633712 | pubmed:volume | 20 | lld:pubmed |
pubmed-article:17633712 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:17633712 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:17633712 | pubmed:pagination | 346-58 | lld:pubmed |
pubmed-article:17633712 | pubmed:dateRevised | 2007-12-3 | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:meshHeading | pubmed-meshheading:17633712... | lld:pubmed |
pubmed-article:17633712 | pubmed:year | 2007 | lld:pubmed |
pubmed-article:17633712 | pubmed:articleTitle | A volumetric approach to quantifying region-to-region white matter connectivity in diffusion tensor MRI. | lld:pubmed |
pubmed-article:17633712 | pubmed:affiliation | School of Computing, University of Utah, Salt Lake City, UT, USA. | lld:pubmed |
pubmed-article:17633712 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:17633712 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:17633712 | pubmed:publicationType | Evaluation Studies | lld:pubmed |
pubmed-article:17633712 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17633712 | lld:pubmed |