Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17408292rdf:typepubmed:Citationlld:pubmed
pubmed-article:17408292lifeskim:mentionsumls-concept:C0205246lld:lifeskim
pubmed-article:17408292lifeskim:mentionsumls-concept:C0205199lld:lifeskim
pubmed-article:17408292lifeskim:mentionsumls-concept:C0449444lld:lifeskim
pubmed-article:17408292lifeskim:mentionsumls-concept:C1521827lld:lifeskim
pubmed-article:17408292lifeskim:mentionsumls-concept:C1450053lld:lifeskim
pubmed-article:17408292lifeskim:mentionsumls-concept:C1721060lld:lifeskim
pubmed-article:17408292lifeskim:mentionsumls-concept:C1138408lld:lifeskim
pubmed-article:17408292lifeskim:mentionsumls-concept:C0450363lld:lifeskim
pubmed-article:17408292pubmed:issue11lld:pubmed
pubmed-article:17408292pubmed:dateCreated2007-5-15lld:pubmed
pubmed-article:17408292pubmed:abstractTextAdsorption of polyethyleneimine (PEI)-metal ion complexes onto the surfaces of carbon nanotubes (CNTs) and subsequent reduction of the metal ion leads to the fabrication of one-dimensional CNT/metal nanoparticle (CNT/M NP) heterogeneous nanostructures. Alternating adsorption of PEI-metal ion complexes and CNTs on substrates results in the formation of multilayered CNT films. After exposing the films to NaBH4, three-dimensional CNT composite films embedded with metal nanoparticles (NPs) are obtained. UV-visible spectroscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy are used to characterize the film assembly. The resulting (CNT/M NP)n films inherit the properties from both the metal NPs and CNTs that exhibit unique performance in surface-enhanced Raman scattering (SERS) and electrocatalytic activities to the reduction of O2; as a result, they are more attractive compared to (CNT/polyelectrolyte)n and (NP/polyelectrolyte)n films because of their multifunctionality.lld:pubmed
pubmed-article:17408292pubmed:languageenglld:pubmed
pubmed-article:17408292pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17408292pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:17408292pubmed:monthMaylld:pubmed
pubmed-article:17408292pubmed:issn0743-7463lld:pubmed
pubmed-article:17408292pubmed:authorpubmed-author:WaddW BWBlld:pubmed
pubmed-article:17408292pubmed:authorpubmed-author:DongShaojunSlld:pubmed
pubmed-article:17408292pubmed:authorpubmed-author:WangLiangLlld:pubmed
pubmed-article:17408292pubmed:authorpubmed-author:HuXiaogeXlld:pubmed
pubmed-article:17408292pubmed:authorpubmed-author:GuoShaojunSlld:pubmed
pubmed-article:17408292pubmed:issnTypePrintlld:pubmed
pubmed-article:17408292pubmed:day22lld:pubmed
pubmed-article:17408292pubmed:volume23lld:pubmed
pubmed-article:17408292pubmed:ownerNLMlld:pubmed
pubmed-article:17408292pubmed:authorsCompleteYlld:pubmed
pubmed-article:17408292pubmed:pagination6352-7lld:pubmed
pubmed-article:17408292pubmed:year2007lld:pubmed
pubmed-article:17408292pubmed:articleTitleA general route to prepare one- and three-dimensional carbon nanotube/metal nanoparticle composite nanostructures.lld:pubmed
pubmed-article:17408292pubmed:affiliationState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.lld:pubmed
pubmed-article:17408292pubmed:publicationTypeJournal Articlelld:pubmed