Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17363677rdf:typepubmed:Citationlld:pubmed
pubmed-article:17363677lifeskim:mentionsumls-concept:C0034650lld:lifeskim
pubmed-article:17363677lifeskim:mentionsumls-concept:C0043047lld:lifeskim
pubmed-article:17363677lifeskim:mentionsumls-concept:C0005682lld:lifeskim
pubmed-article:17363677lifeskim:mentionsumls-concept:C0012472lld:lifeskim
pubmed-article:17363677lifeskim:mentionsumls-concept:C0018338lld:lifeskim
pubmed-article:17363677lifeskim:mentionsumls-concept:C0031164lld:lifeskim
pubmed-article:17363677lifeskim:mentionsumls-concept:C1704259lld:lifeskim
pubmed-article:17363677lifeskim:mentionsumls-concept:C0311417lld:lifeskim
pubmed-article:17363677lifeskim:mentionsumls-concept:C1705987lld:lifeskim
pubmed-article:17363677lifeskim:mentionsumls-concept:C1879547lld:lifeskim
pubmed-article:17363677pubmed:issue1lld:pubmed
pubmed-article:17363677pubmed:dateCreated2007-7-4lld:pubmed
pubmed-article:17363677pubmed:abstractTextPGE(2) is a well-known inhibitor of the antidiuretic hormone-induced increase of osmotic water permeability (OWP) in different osmoregulatory epithelia; however, the mechanisms underlying this effect of PGE(2) are not completely understood. Here, we report that, in the frog Rana temporaria urinary bladder, EP(1)-receptor-mediated inhibition of arginine-vasotocin (AVT)-induced OWP by PGE(2) is attributed to increased generation of nitric oxide (NO) in epithelial cells. It was shown that the inhibitory effect of 17-phenyl-trinor-PGE(2) (17-ph-PGE(2)), an EP(1) agonist, on AVT-induced OWP was significantly reduced in the presence of 7-nitroindazole (7-NI), a neuronal NO synthase (nNOS) inhibitor. NO synthase (NOS) activity in both lysed and intact epithelial cells measured as a rate of conversion of l-[(3)H]arginine to l-[(3)H]citrulline was Ca(2+) dependent and inhibited by 7-NI. PGE(2) and 17-ph-PGE(2), but not M&B-28767 (EP(3) agonist) or butaprost (EP(2) agonist), stimulated NOS activity in epithelial cells. The above effect of PGE(2) was abolished in the presence of SC-19220, an EP(1) antagonist. 7-NI reduced the stimulatory effect of 17-ph-PGE(2) on NOS activity. 17-ph-PGE(2) increased intracellular Ca(2+) concentration and cGMP in epithelial cells. Western blot analysis revealed an nNOS expression in epithelial cells. These results show that the inhibitory effect of PGE(2) on AVT-induced OWP in the frog urinary bladder is based at least partly on EP(1)-receptor-mediated activation of the NO/cGMP pathway, suggesting a novel cross talk between AVT, PGE(2), and nNOS that may be important in the regulation of water transport.lld:pubmed
pubmed-article:17363677pubmed:languageenglld:pubmed
pubmed-article:17363677pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:citationSubsetIMlld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17363677pubmed:statusMEDLINElld:pubmed
pubmed-article:17363677pubmed:monthJullld:pubmed
pubmed-article:17363677pubmed:issn0363-6119lld:pubmed
pubmed-article:17363677pubmed:authorpubmed-author:GambaryanStep...lld:pubmed
pubmed-article:17363677pubmed:authorpubmed-author:BachteevaVera...lld:pubmed
pubmed-article:17363677pubmed:authorpubmed-author:FockEkaterina...lld:pubmed
pubmed-article:17363677pubmed:authorpubmed-author:LavrovaElenaElld:pubmed
pubmed-article:17363677pubmed:authorpubmed-author:NikolaevaSvet...lld:pubmed
pubmed-article:17363677pubmed:authorpubmed-author:ParnovaRimmaRlld:pubmed
pubmed-article:17363677pubmed:issnTypePrintlld:pubmed
pubmed-article:17363677pubmed:volume293lld:pubmed
pubmed-article:17363677pubmed:ownerNLMlld:pubmed
pubmed-article:17363677pubmed:authorsCompleteYlld:pubmed
pubmed-article:17363677pubmed:paginationR528-37lld:pubmed
pubmed-article:17363677pubmed:dateRevised2010-11-18lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:meshHeadingpubmed-meshheading:17363677...lld:pubmed
pubmed-article:17363677pubmed:year2007lld:pubmed
pubmed-article:17363677pubmed:articleTitleProstaglandin E2 inhibits vasotocin-induced osmotic water permeability in the frog urinary bladder by EP1-receptor-mediated activation of NO/cGMP pathway.lld:pubmed
pubmed-article:17363677pubmed:affiliationLaboratory of Renal Physiology, I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, M. Torez Avenue 44, 194223 St. Petersburg, Russia.lld:pubmed
pubmed-article:17363677pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17363677pubmed:publicationTypeIn Vitrolld:pubmed
pubmed-article:17363677pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed