pubmed-article:17295527 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:17295527 | lifeskim:mentions | umls-concept:C0037107 | lld:lifeskim |
pubmed-article:17295527 | lifeskim:mentions | umls-concept:C0259981 | lld:lifeskim |
pubmed-article:17295527 | lifeskim:mentions | umls-concept:C1721058 | lld:lifeskim |
pubmed-article:17295527 | pubmed:issue | 6 | lld:pubmed |
pubmed-article:17295527 | pubmed:dateCreated | 2007-3-6 | lld:pubmed |
pubmed-article:17295527 | pubmed:abstractText | Silicon is a rather inefficient light emitter due to the indirect band gap electronic structure, requiring a phonon to balance the electron momentum during the interband transition. Fortunately, momentum requirements are relaxed in the 1-5 nm diameter Si crystals as a result of quantum confinement effects, and bright photoluminescence (PL) in the UV-vis range is achieved. Photoluminescent Si nanocrystals along with the C- and SiC-based nanoparticles are considered bioinert and may lead to the development of biocompatible and smaller probes than the well-known metal chalcogenide-based quantum dots. Published Si nanocrystal production procedures typically do not allow for the fine control of the particle size. An accepted way to make the H-terminated Si nanocrystals consists of anodic Si wafer etching with the subsequent breakup of the porous film in an ultrasound bath. Resulting H-termination provides a useful platform for further chemical derivatization and conjugation to biomolecules. However, a rather polydisperse mixture is produced following the ultrasonic treatment, leading to the distributed band gap energies and the extent of surface passivation. From the technological point of view, a homogeneous nanoparticle size mixture is highly desirable. In this study, we offer an efficient way to reduce the H-terminated Si nanocrystal diameter and narrow size distribution through photocatalyzed dissolution in a HF/HNO3 acid mixture. Si particles were produced using the lateral etching of a Si wafer in a HF/EtOH/H2O bath followed by sonication in deaerated methanol. Initial suspensions exhibited broad photoluminescence in the red spectral region. Photoassisted etching was carried out by adding the HF/HNO3 acid mixture to the suspension and exposing it to a 340 nm light. Photoluminescence and absorbance spectra, measured during dissolution, show the gradual particle size decrease as confirmed by the photoluminescence blue shift. The simultaneous narrowing of the photoluminescence spectral bandwidth suggests that the dissolution rate varies with the particle size. We show that the Si nanoparticle dissolution rate depends on the amount of light adsorbed by the particle and accounts for the etching rate variation with the particle size. Significant improvement in the PL quantum yield is observed during the acid treatment, suggesting improvement in the dangling bond passivation. | lld:pubmed |
pubmed-article:17295527 | pubmed:language | eng | lld:pubmed |
pubmed-article:17295527 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17295527 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:17295527 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17295527 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17295527 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17295527 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:17295527 | pubmed:month | Mar | lld:pubmed |
pubmed-article:17295527 | pubmed:issn | 0743-7463 | lld:pubmed |
pubmed-article:17295527 | pubmed:author | pubmed-author:ReipaVytasV | lld:pubmed |
pubmed-article:17295527 | pubmed:author | pubmed-author:WangNam SunNS | lld:pubmed |
pubmed-article:17295527 | pubmed:author | pubmed-author:ChoiJonghoonJ | lld:pubmed |
pubmed-article:17295527 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:17295527 | pubmed:day | 13 | lld:pubmed |
pubmed-article:17295527 | pubmed:volume | 23 | lld:pubmed |
pubmed-article:17295527 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:17295527 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:17295527 | pubmed:pagination | 3388-94 | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:meshHeading | pubmed-meshheading:17295527... | lld:pubmed |
pubmed-article:17295527 | pubmed:year | 2007 | lld:pubmed |
pubmed-article:17295527 | pubmed:articleTitle | Photoassisted tuning of silicon nanocrystal photoluminescence. | lld:pubmed |
pubmed-article:17295527 | pubmed:affiliation | Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA. | lld:pubmed |
pubmed-article:17295527 | pubmed:publicationType | Journal Article | lld:pubmed |