Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17242745rdf:typepubmed:Citationlld:pubmed
pubmed-article:17242745lifeskim:mentionsumls-concept:C0020242lld:lifeskim
pubmed-article:17242745lifeskim:mentionsumls-concept:C0870071lld:lifeskim
pubmed-article:17242745lifeskim:mentionsumls-concept:C0183210lld:lifeskim
pubmed-article:17242745lifeskim:mentionsumls-concept:C1705938lld:lifeskim
pubmed-article:17242745lifeskim:mentionsumls-concept:C1527178lld:lifeskim
pubmed-article:17242745lifeskim:mentionsumls-concept:C0286152lld:lifeskim
pubmed-article:17242745pubmed:issue5lld:pubmed
pubmed-article:17242745pubmed:dateCreated2007-1-23lld:pubmed
pubmed-article:17242745pubmed:abstractTextIn the scope of the present contribution, perovskite SrTi(1-x)Fe(x)O(3-delta) was investigated as a model material for conductometric hydrocarbon sensing at intermediate temperatures between 350 and 450 degrees C. To explain the observations made during sensor optimization in a quantitative way, a novel sensor model was proposed. At the microscopic scale, the local gas concentration affects local conductivity of the gas sensitive material. In the case of n-type tin oxide sensors, this interaction is commonly attributed to a redox reaction between the reducing analyte gas and adsorbed oxygen. In contrast, a reduction process affecting the entire bulk was assumed to govern gas sensitivity of SrTi(1-x)Fe(x)O(3-delta) films. Although very few variables needed to be assumed or fitted, the present bulk-type model was found to represent well sensor functionality of p-type conducting SrTi(0.8)Fe(0.2)O(3-delta) films. In addition to the temperature dependence of sensor response, the hydrocarbon sensitivity, m, was predicted with good accuracy. The different sensor responses towards hydrocarbons with a different chemical reactivity and other cross-interfering species, such as NO, was explained as well as the dependence on film thickness for screen printed films.lld:pubmed
pubmed-article:17242745pubmed:languageenglld:pubmed
pubmed-article:17242745pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:citationSubsetIMlld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17242745pubmed:statusMEDLINElld:pubmed
pubmed-article:17242745pubmed:monthFeblld:pubmed
pubmed-article:17242745pubmed:issn1463-9076lld:pubmed
pubmed-article:17242745pubmed:authorpubmed-author:MoosRRlld:pubmed
pubmed-article:17242745pubmed:authorpubmed-author:SahnerKKlld:pubmed
pubmed-article:17242745pubmed:issnTypePrintlld:pubmed
pubmed-article:17242745pubmed:day7lld:pubmed
pubmed-article:17242745pubmed:volume9lld:pubmed
pubmed-article:17242745pubmed:ownerNLMlld:pubmed
pubmed-article:17242745pubmed:authorsCompleteYlld:pubmed
pubmed-article:17242745pubmed:pagination635-42lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:meshHeadingpubmed-meshheading:17242745...lld:pubmed
pubmed-article:17242745pubmed:year2007lld:pubmed
pubmed-article:17242745pubmed:articleTitleModeling of hydrocarbon sensors based on p-type semiconducting perovskites.lld:pubmed
pubmed-article:17242745pubmed:affiliationFunctional Materials, University of Bayreuth, Universitätsstr 30, D-95447, Bayreuth, Germany. Functional.Materials@uni-bayreuth.delld:pubmed
pubmed-article:17242745pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17242745pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed