Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17239859rdf:typepubmed:Citationlld:pubmed
pubmed-article:17239859lifeskim:mentionsumls-concept:C1533691lld:lifeskim
pubmed-article:17239859lifeskim:mentionsumls-concept:C0681948lld:lifeskim
pubmed-article:17239859pubmed:issue3lld:pubmed
pubmed-article:17239859pubmed:dateCreated2007-1-30lld:pubmed
pubmed-article:17239859pubmed:abstractTextParameters often are tuned with metabolite concentration time series data to build a dynamic model of metabolism. However, such tuning may reduce the extrapolation ability (generalization capability) of the model. In this study, we determined detailed kinetic parameters of three purified Escherichia coli glycolytic enzymes using the initial velocity method for individual enzymes; i.e., the parameters were determined independently from metabolite concentration time series data. The metabolite concentration time series calculated by the model using the parameters matched the experimental data obtained in an actual multi-enzyme system consisting of the three purified E. coli glycolytic enzymes. Thus, the results indicate that kinetic parameters can be determined without using an undesirable tuning process.lld:pubmed
pubmed-article:17239859pubmed:languageenglld:pubmed
pubmed-article:17239859pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17239859pubmed:citationSubsetIMlld:pubmed
pubmed-article:17239859pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17239859pubmed:statusMEDLINElld:pubmed
pubmed-article:17239859pubmed:monthFeblld:pubmed
pubmed-article:17239859pubmed:issn0014-5793lld:pubmed
pubmed-article:17239859pubmed:authorpubmed-author:MoriHirotadaHlld:pubmed
pubmed-article:17239859pubmed:authorpubmed-author:TomitaMasaruMlld:pubmed
pubmed-article:17239859pubmed:authorpubmed-author:WatanabeHisam...lld:pubmed
pubmed-article:17239859pubmed:authorpubmed-author:YoshinoMasata...lld:pubmed
pubmed-article:17239859pubmed:authorpubmed-author:IshiiNobuyosh...lld:pubmed
pubmed-article:17239859pubmed:authorpubmed-author:HagiyaAkikoAlld:pubmed
pubmed-article:17239859pubmed:authorpubmed-author:SugaYoshihiro...lld:pubmed
pubmed-article:17239859pubmed:issnTypePrintlld:pubmed
pubmed-article:17239859pubmed:day6lld:pubmed
pubmed-article:17239859pubmed:volume581lld:pubmed
pubmed-article:17239859pubmed:ownerNLMlld:pubmed
pubmed-article:17239859pubmed:authorsCompleteYlld:pubmed
pubmed-article:17239859pubmed:pagination413-20lld:pubmed
pubmed-article:17239859pubmed:meshHeadingpubmed-meshheading:17239859...lld:pubmed
pubmed-article:17239859pubmed:meshHeadingpubmed-meshheading:17239859...lld:pubmed
pubmed-article:17239859pubmed:meshHeadingpubmed-meshheading:17239859...lld:pubmed
pubmed-article:17239859pubmed:meshHeadingpubmed-meshheading:17239859...lld:pubmed
pubmed-article:17239859pubmed:meshHeadingpubmed-meshheading:17239859...lld:pubmed
pubmed-article:17239859pubmed:year2007lld:pubmed
pubmed-article:17239859pubmed:articleTitleDynamic simulation of an in vitro multi-enzyme system.lld:pubmed
pubmed-article:17239859pubmed:affiliationInstitute for Advanced Biosciences, Keio University, Tsuruoka 997-0035, Japan.lld:pubmed
pubmed-article:17239859pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17239859pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:17239859pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
entrez-gene:948535entrezgene:pubmedpubmed-article:17239859lld:entrezgene
entrez-gene:946858entrezgene:pubmedpubmed-article:17239859lld:entrezgene
entrez-gene:948412entrezgene:pubmedpubmed-article:17239859lld:entrezgene
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17239859lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17239859lld:pubmed