Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17226934rdf:typepubmed:Citationlld:pubmed
pubmed-article:17226934lifeskim:mentionsumls-concept:C1123023lld:lifeskim
pubmed-article:17226934lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:17226934lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:17226934lifeskim:mentionsumls-concept:C0008902lld:lifeskim
pubmed-article:17226934lifeskim:mentionsumls-concept:C1325847lld:lifeskim
pubmed-article:17226934lifeskim:mentionsumls-concept:C0887969lld:lifeskim
pubmed-article:17226934lifeskim:mentionsumls-concept:C0079809lld:lifeskim
pubmed-article:17226934lifeskim:mentionsumls-concept:C0887819lld:lifeskim
pubmed-article:17226934lifeskim:mentionsumls-concept:C1705938lld:lifeskim
pubmed-article:17226934lifeskim:mentionsumls-concept:C1527178lld:lifeskim
pubmed-article:17226934pubmed:issue1lld:pubmed
pubmed-article:17226934pubmed:dateCreated2007-1-17lld:pubmed
pubmed-article:17226934pubmed:abstractTextCurrently, the only validated methods to identify skin sensitization effects are in vivo models, such as the local lymph node assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, for eaxample, quantitative structure-activity relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR) and partial least-square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, X(2)HL, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, whereas that of the PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0% to 86.7%, whereas that of the PLS-logistic regression models ranges from 73.3% to 80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors, and negatively partially charged atoms.lld:pubmed
pubmed-article:17226934pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:commentsCorrectionshttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:languageenglld:pubmed
pubmed-article:17226934pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17226934pubmed:citationSubsetIMlld:pubmed
pubmed-article:17226934pubmed:statusMEDLINElld:pubmed
pubmed-article:17226934pubmed:monthJanlld:pubmed
pubmed-article:17226934pubmed:issn0893-228Xlld:pubmed
pubmed-article:17226934pubmed:authorpubmed-author:LiYiYlld:pubmed
pubmed-article:17226934pubmed:authorpubmed-author:GerberickG...lld:pubmed
pubmed-article:17226934pubmed:authorpubmed-author:LiuJianzhongJlld:pubmed
pubmed-article:17226934pubmed:authorpubmed-author:PanDahuaDlld:pubmed
pubmed-article:17226934pubmed:authorpubmed-author:HopfingerAnto...lld:pubmed
pubmed-article:17226934pubmed:authorpubmed-author:KernPetra SPSlld:pubmed
pubmed-article:17226934pubmed:authorpubmed-author:TsengYufeng...lld:pubmed
pubmed-article:17226934pubmed:issnTypePrintlld:pubmed
pubmed-article:17226934pubmed:volume20lld:pubmed
pubmed-article:17226934pubmed:ownerNLMlld:pubmed
pubmed-article:17226934pubmed:authorsCompleteYlld:pubmed
pubmed-article:17226934pubmed:pagination114-28lld:pubmed
pubmed-article:17226934pubmed:dateRevised2009-11-18lld:pubmed
pubmed-article:17226934pubmed:meshHeadingpubmed-meshheading:17226934...lld:pubmed
pubmed-article:17226934pubmed:meshHeadingpubmed-meshheading:17226934...lld:pubmed
pubmed-article:17226934pubmed:meshHeadingpubmed-meshheading:17226934...lld:pubmed
pubmed-article:17226934pubmed:meshHeadingpubmed-meshheading:17226934...lld:pubmed
pubmed-article:17226934pubmed:meshHeadingpubmed-meshheading:17226934...lld:pubmed
pubmed-article:17226934pubmed:meshHeadingpubmed-meshheading:17226934...lld:pubmed
pubmed-article:17226934pubmed:meshHeadingpubmed-meshheading:17226934...lld:pubmed
pubmed-article:17226934pubmed:meshHeadingpubmed-meshheading:17226934...lld:pubmed
pubmed-article:17226934pubmed:year2007lld:pubmed
pubmed-article:17226934pubmed:articleTitle4D-fingerprint categorical QSAR models for skin sensitization based on the classification of local lymph node assay measures.lld:pubmed
pubmed-article:17226934pubmed:affiliationLaboratory of Molecular Modeling and Design (MC 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, USA.lld:pubmed
pubmed-article:17226934pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17226934pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
pubmed-article:17226934pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17226934lld:pubmed