pubmed-article:17226934 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C1123023 | lld:lifeskim |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C0026339 | lld:lifeskim |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C0026336 | lld:lifeskim |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C0008902 | lld:lifeskim |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C1325847 | lld:lifeskim |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C0887969 | lld:lifeskim |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C0079809 | lld:lifeskim |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C0887819 | lld:lifeskim |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C1705938 | lld:lifeskim |
pubmed-article:17226934 | lifeskim:mentions | umls-concept:C1527178 | lld:lifeskim |
pubmed-article:17226934 | pubmed:issue | 1 | lld:pubmed |
pubmed-article:17226934 | pubmed:dateCreated | 2007-1-17 | lld:pubmed |
pubmed-article:17226934 | pubmed:abstractText | Currently, the only validated methods to identify skin sensitization effects are in vivo models, such as the local lymph node assay (LLNA) and guinea pig studies. There is a tremendous need, in particular due to novel legislation, to develop animal alternatives, for eaxample, quantitative structure-activity relationship (QSAR) models. Here, QSAR models for skin sensitization using LLNA data have been constructed. The descriptors used to generate these models are derived from the 4D-molecular similarity paradigm and are referred to as universal 4D-fingerprints. A training set of 132 structurally diverse compounds and a test set of 15 structurally diverse compounds were used in this study. The statistical methodologies used to build the models are logistic regression (LR) and partial least-square coupled logistic regression (PLS-LR), which prove to be effective tools for studying skin sensitization measures expressed in the two categorical terms of sensitizer and non-sensitizer. QSAR models with low values of the Hosmer-Lemeshow goodness-of-fit statistic, X(2)HL, are significant and predictive. For the training set, the cross-validated prediction accuracy of the logistic regression models ranges from 77.3% to 78.0%, whereas that of the PLS-logistic regression models ranges from 87.1% to 89.4%. For the test set, the prediction accuracy of logistic regression models ranges from 80.0% to 86.7%, whereas that of the PLS-logistic regression models ranges from 73.3% to 80.0%. The QSAR models are made up of 4D-fingerprints related to aromatic atoms, hydrogen bond acceptors, and negatively partially charged atoms. | lld:pubmed |
pubmed-article:17226934 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:language | eng | lld:pubmed |
pubmed-article:17226934 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17226934 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:17226934 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:17226934 | pubmed:month | Jan | lld:pubmed |
pubmed-article:17226934 | pubmed:issn | 0893-228X | lld:pubmed |
pubmed-article:17226934 | pubmed:author | pubmed-author:LiYiY | lld:pubmed |
pubmed-article:17226934 | pubmed:author | pubmed-author:GerberickG... | lld:pubmed |
pubmed-article:17226934 | pubmed:author | pubmed-author:LiuJianzhongJ | lld:pubmed |
pubmed-article:17226934 | pubmed:author | pubmed-author:PanDahuaD | lld:pubmed |
pubmed-article:17226934 | pubmed:author | pubmed-author:HopfingerAnto... | lld:pubmed |
pubmed-article:17226934 | pubmed:author | pubmed-author:KernPetra SPS | lld:pubmed |
pubmed-article:17226934 | pubmed:author | pubmed-author:TsengYufeng... | lld:pubmed |
pubmed-article:17226934 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:17226934 | pubmed:volume | 20 | lld:pubmed |
pubmed-article:17226934 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:17226934 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:17226934 | pubmed:pagination | 114-28 | lld:pubmed |
pubmed-article:17226934 | pubmed:dateRevised | 2009-11-18 | lld:pubmed |
pubmed-article:17226934 | pubmed:meshHeading | pubmed-meshheading:17226934... | lld:pubmed |
pubmed-article:17226934 | pubmed:meshHeading | pubmed-meshheading:17226934... | lld:pubmed |
pubmed-article:17226934 | pubmed:meshHeading | pubmed-meshheading:17226934... | lld:pubmed |
pubmed-article:17226934 | pubmed:meshHeading | pubmed-meshheading:17226934... | lld:pubmed |
pubmed-article:17226934 | pubmed:meshHeading | pubmed-meshheading:17226934... | lld:pubmed |
pubmed-article:17226934 | pubmed:meshHeading | pubmed-meshheading:17226934... | lld:pubmed |
pubmed-article:17226934 | pubmed:meshHeading | pubmed-meshheading:17226934... | lld:pubmed |
pubmed-article:17226934 | pubmed:meshHeading | pubmed-meshheading:17226934... | lld:pubmed |
pubmed-article:17226934 | pubmed:year | 2007 | lld:pubmed |
pubmed-article:17226934 | pubmed:articleTitle | 4D-fingerprint categorical QSAR models for skin sensitization based on the classification of local lymph node assay measures. | lld:pubmed |
pubmed-article:17226934 | pubmed:affiliation | Laboratory of Molecular Modeling and Design (MC 781), College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, USA. | lld:pubmed |
pubmed-article:17226934 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:17226934 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:17226934 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17226934 | lld:pubmed |