Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17208998rdf:typepubmed:Citationlld:pubmed
pubmed-article:17208998lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:17208998lifeskim:mentionsumls-concept:C0020205lld:lifeskim
pubmed-article:17208998lifeskim:mentionsumls-concept:C0205042lld:lifeskim
pubmed-article:17208998lifeskim:mentionsumls-concept:C0232338lld:lifeskim
pubmed-article:17208998lifeskim:mentionsumls-concept:C0439751lld:lifeskim
pubmed-article:17208998pubmed:issue6lld:pubmed
pubmed-article:17208998pubmed:dateCreated2007-6-12lld:pubmed
pubmed-article:17208998pubmed:abstractTextUsing a frequency-domain Womersley-type model, we previously simulated pulsatile blood flow throughout the coronary arterial tree. Although this model represents a good approximation for the smaller vessels, it does not take into account the nonlinear convective energy losses in larger vessels. Here, using Womersley's theory, we present a hybrid model that considers the nonlinear effects for the larger epicardial arteries while simulating the distal vessels (down to the 1st capillary segments) with the use of Womersley's Theory. The main trunk and primary branches were discretized and modeled with one-dimensional Navier-Stokes equations, while the smaller-diameter vessels were treated as Womersley-type vessels. Energy losses associated with vessel bifurcations were incorporated in the present analysis. The formulation enables prediction of impedance and pressure and pulsatile flow distribution throughout the entire coronary arterial tree down to the first capillary segments in the arrested, vasodilated state. We found that the nonlinear convective term is negligible and the loss of energy at a bifurcation is small in the larger epicardial vessels of an arrested heart. Furthermore, we found that the flow waves along the trunk or at the primary branches tend to scale (normalized with respect to their mean values) to a single curve, except for a small phase angle difference. Finally, the model predictions for the inlet pressure and flow waves are in excellent agreement with previously published experimental results. This hybrid one-dimensional/Womersley model is an efficient approach that captures the essence of the hemodynamics of a complex large-scale vascular network. The present model has numerous applications to understanding the dynamics of coronary circulation.lld:pubmed
pubmed-article:17208998pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17208998pubmed:languageenglld:pubmed
pubmed-article:17208998pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17208998pubmed:citationSubsetIMlld:pubmed
pubmed-article:17208998pubmed:statusMEDLINElld:pubmed
pubmed-article:17208998pubmed:monthJunlld:pubmed
pubmed-article:17208998pubmed:issn0363-6135lld:pubmed
pubmed-article:17208998pubmed:authorpubmed-author:KassabGhassan...lld:pubmed
pubmed-article:17208998pubmed:authorpubmed-author:HuoYunlongYlld:pubmed
pubmed-article:17208998pubmed:issnTypePrintlld:pubmed
pubmed-article:17208998pubmed:volume292lld:pubmed
pubmed-article:17208998pubmed:ownerNLMlld:pubmed
pubmed-article:17208998pubmed:authorsCompleteYlld:pubmed
pubmed-article:17208998pubmed:paginationH2623-33lld:pubmed
pubmed-article:17208998pubmed:dateRevised2007-12-3lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:meshHeadingpubmed-meshheading:17208998...lld:pubmed
pubmed-article:17208998pubmed:year2007lld:pubmed
pubmed-article:17208998pubmed:articleTitleA hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree.lld:pubmed
pubmed-article:17208998pubmed:affiliationDepartment of Biomedical Engineering, Indiana Univeristy-Purdue Univeristy Indianapolis, Indianapolis, IN 46202, USA.lld:pubmed
pubmed-article:17208998pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:17208998pubmed:publicationTypeComparative Studylld:pubmed
pubmed-article:17208998pubmed:publicationTypeResearch Support, N.I.H., Extramurallld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17208998lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:17208998lld:pubmed