Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:17191944rdf:typepubmed:Citationlld:pubmed
pubmed-article:17191944lifeskim:mentionsumls-concept:C0681842lld:lifeskim
pubmed-article:17191944lifeskim:mentionsumls-concept:C0678594lld:lifeskim
pubmed-article:17191944lifeskim:mentionsumls-concept:C1533716lld:lifeskim
pubmed-article:17191944lifeskim:mentionsumls-concept:C1882932lld:lifeskim
pubmed-article:17191944lifeskim:mentionsumls-concept:C0871161lld:lifeskim
pubmed-article:17191944lifeskim:mentionsumls-concept:C1514861lld:lifeskim
pubmed-article:17191944pubmed:issue11lld:pubmed
pubmed-article:17191944pubmed:dateCreated2006-12-28lld:pubmed
pubmed-article:17191944pubmed:abstractTextThe electrotopological state and molecular connectivity indices are defined as a system for molecular-structure description, using the term Structure-Information Representation. This system is built on the depiction of a molecule as a network composed of atoms of varying valence electron counts that constitute the valence state, bonded in discrete patterns constituting an electrotopological state. The system is employed in the structure-activity analysis of two sets of ADMET data. Models are created relating hepatotoxicity and human metabolic stability. The validity of these models makes them useful for activity prediction.lld:pubmed
pubmed-article:17191944pubmed:languageenglld:pubmed
pubmed-article:17191944pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17191944pubmed:citationSubsetIMlld:pubmed
pubmed-article:17191944pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:17191944pubmed:statusMEDLINElld:pubmed
pubmed-article:17191944pubmed:monthNovlld:pubmed
pubmed-article:17191944pubmed:issn1612-1880lld:pubmed
pubmed-article:17191944pubmed:authorpubmed-author:HallLowell...lld:pubmed
pubmed-article:17191944pubmed:authorpubmed-author:KierLemont...lld:pubmed
pubmed-article:17191944pubmed:issnTypeElectroniclld:pubmed
pubmed-article:17191944pubmed:volume2lld:pubmed
pubmed-article:17191944pubmed:ownerNLMlld:pubmed
pubmed-article:17191944pubmed:authorsCompleteYlld:pubmed
pubmed-article:17191944pubmed:pagination1428-37lld:pubmed
pubmed-article:17191944pubmed:meshHeadingpubmed-meshheading:17191944...lld:pubmed
pubmed-article:17191944pubmed:meshHeadingpubmed-meshheading:17191944...lld:pubmed
pubmed-article:17191944pubmed:meshHeadingpubmed-meshheading:17191944...lld:pubmed
pubmed-article:17191944pubmed:meshHeadingpubmed-meshheading:17191944...lld:pubmed
pubmed-article:17191944pubmed:meshHeadingpubmed-meshheading:17191944...lld:pubmed
pubmed-article:17191944pubmed:year2005lld:pubmed
pubmed-article:17191944pubmed:articleTitleThe prediction of ADMET properties using structure information representations.lld:pubmed
pubmed-article:17191944pubmed:affiliationDepartment of Medicinal Chemistry, School of Pharmacy and The Center for the Study of Biological Complexity, Virginia Commonwealth University Richmond, VA 23298, USA.lld:pubmed
pubmed-article:17191944pubmed:publicationTypeJournal Articlelld:pubmed