pubmed-article:17131390 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:17131390 | lifeskim:mentions | umls-concept:C0086418 | lld:lifeskim |
pubmed-article:17131390 | lifeskim:mentions | umls-concept:C0262950 | lld:lifeskim |
pubmed-article:17131390 | lifeskim:mentions | umls-concept:C1113654 | lld:lifeskim |
pubmed-article:17131390 | lifeskim:mentions | umls-concept:C0007589 | lld:lifeskim |
pubmed-article:17131390 | lifeskim:mentions | umls-concept:C0947647 | lld:lifeskim |
pubmed-article:17131390 | lifeskim:mentions | umls-concept:C1533691 | lld:lifeskim |
pubmed-article:17131390 | lifeskim:mentions | umls-concept:C1515655 | lld:lifeskim |
pubmed-article:17131390 | lifeskim:mentions | umls-concept:C1511938 | lld:lifeskim |
pubmed-article:17131390 | lifeskim:mentions | umls-concept:C1514485 | lld:lifeskim |
pubmed-article:17131390 | pubmed:issue | 2 | lld:pubmed |
pubmed-article:17131390 | pubmed:dateCreated | 2007-1-22 | lld:pubmed |
pubmed-article:17131390 | pubmed:abstractText | Recent evidence has demonstrated that neural stem cells (NSC) can be expanded from a variety of sources, including embryos, fetuses, and adult bone marrow and brain tissue. We have previously reported the generation of adult rat bone marrow-derived cellular spheres that are morphologically and phenotypically similar to neurospheres derived from brain NSC. Here we show that adult human bone marrow-derived neural stem cells (HBM-NSC) are capable of generating spheres that are similar to brain neural-derived neurospheres. Additionally, we sought to promote proliferation and differentiation of HBM-NSC through transduction with nonreplicative recombinant adenovirus encoding the cDNA sequence for Gli, rADV-Gli-1; sonic hedgehog, rADV-Shh; or Nurr1, rADV-Nurr1. Immunocytochemistry and RT-PCR analysis showed that HBM-NSC could be efficiently expanded and differentiated in vitro and that HBM-NSC transduced with rADV-Gli-1 or rADV-Shh dramatically increased NSC time-related proliferation; however, Nurr1 had no effect on proliferation. We also transplanted HBM-NSC into chicken embryos to examine their potential function in vivo. We found that transduction of HBM-NSC with rADV-Gli-1 or rADV-Shh and subsequent transplantation into chicken embryos increased HBM-NSC proliferation, whereas rADV-Nurr1 promoted migration and differentiation in vivo. Our findings suggest that HBM-NSC can be efficiently expanded and differentiated in vitro and in vivo by overexpressing Gli-1, Shh or Nurr1. | lld:pubmed |
pubmed-article:17131390 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17131390 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17131390 | pubmed:language | eng | lld:pubmed |
pubmed-article:17131390 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:17131390 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:17131390 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:17131390 | pubmed:month | Feb | lld:pubmed |
pubmed-article:17131390 | pubmed:issn | 0360-4012 | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:BlackKeith... | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:YuJohn SJS | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:AkasakiYasuha... | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:ZengXiaorongX | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:YuanXiangpeng... | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:ZengZhaohuiZ | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:LiuGentaoG | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:NgHiushanH | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:ChenHaimingH | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:ZengXianhaoX | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:JiangTingxinT | lld:pubmed |
pubmed-article:17131390 | pubmed:author | pubmed-author:KesseyKofiK | lld:pubmed |
pubmed-article:17131390 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:17131390 | pubmed:day | 1 | lld:pubmed |
pubmed-article:17131390 | pubmed:volume | 85 | lld:pubmed |
pubmed-article:17131390 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:17131390 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:17131390 | pubmed:pagination | 310-20 | lld:pubmed |
pubmed-article:17131390 | pubmed:dateRevised | 2007-12-3 | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:meshHeading | pubmed-meshheading:17131390... | lld:pubmed |
pubmed-article:17131390 | pubmed:year | 2007 | lld:pubmed |
pubmed-article:17131390 | pubmed:articleTitle | Manipulation of proliferation and differentiation of human bone marrow-derived neural stem cells in vitro and in vivo. | lld:pubmed |
pubmed-article:17131390 | pubmed:affiliation | Maxine Dunitz Neurosurgical Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA. | lld:pubmed |
pubmed-article:17131390 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:17131390 | pubmed:publicationType | In Vitro | lld:pubmed |
pubmed-article:17131390 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17131390 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:17131390 | lld:pubmed |