Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:16851674rdf:typepubmed:Citationlld:pubmed
pubmed-article:16851674lifeskim:mentionsumls-concept:C0007009lld:lifeskim
pubmed-article:16851674lifeskim:mentionsumls-concept:C0009148lld:lifeskim
pubmed-article:16851674lifeskim:mentionsumls-concept:C0205148lld:lifeskim
pubmed-article:16851674lifeskim:mentionsumls-concept:C0563533lld:lifeskim
pubmed-article:16851674lifeskim:mentionsumls-concept:C1548437lld:lifeskim
pubmed-article:16851674lifeskim:mentionsumls-concept:C0185125lld:lifeskim
pubmed-article:16851674lifeskim:mentionsumls-concept:C1697272lld:lifeskim
pubmed-article:16851674lifeskim:mentionsumls-concept:C1522408lld:lifeskim
pubmed-article:16851674lifeskim:mentionsumls-concept:C1704806lld:lifeskim
pubmed-article:16851674pubmed:issue13lld:pubmed
pubmed-article:16851674pubmed:dateCreated2006-7-20lld:pubmed
pubmed-article:16851674pubmed:abstractTextWe present the results of the RAPET (reaction under autogenic pressure at elevated temperatures) dissociation of CoZr(2)(acac)(2)(O(i)Pr)(8) at 700 degrees C in a closed Swagelok cell under an applied magnetic field of 10 T. It produces a mixture of carbon-coated and noncoated metastable ZrO(2) nanoparticles, bare metallic Co nanoparticles, and bare carbon. The same reaction in the absence of a magnetic field produces spherical Co and ZrO(2) particles in sizes ranging from 11 to 16 nm and exhibiting, at room temperature, metastable phases: fcc for cobalt and a tetragonal phase for zirconia. The metastable phases of Co and ZrO(2) are manifested because of a carbon shell of approximately 4 nm thickness anchored to their surfaces. The effect of an applied magnetic field to synthesize morphologically different, but structurally the same, products is the key topic of the present paper.lld:pubmed
pubmed-article:16851674pubmed:languageenglld:pubmed
pubmed-article:16851674pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16851674pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:16851674pubmed:monthAprlld:pubmed
pubmed-article:16851674pubmed:issn1520-6106lld:pubmed
pubmed-article:16851674pubmed:authorpubmed-author:GedankenAharo...lld:pubmed
pubmed-article:16851674pubmed:authorpubmed-author:BabaShinjiSlld:pubmed
pubmed-article:16851674pubmed:authorpubmed-author:KesslerVadim...lld:pubmed
pubmed-article:16851674pubmed:authorpubmed-author:PolVilas GVGlld:pubmed
pubmed-article:16851674pubmed:authorpubmed-author:PolSwati VSVlld:pubmed
pubmed-article:16851674pubmed:authorpubmed-author:SeisenbaevaGu...lld:pubmed
pubmed-article:16851674pubmed:authorpubmed-author:SungMun-GyuMGlld:pubmed
pubmed-article:16851674pubmed:issnTypePrintlld:pubmed
pubmed-article:16851674pubmed:day7lld:pubmed
pubmed-article:16851674pubmed:volume109lld:pubmed
pubmed-article:16851674pubmed:ownerNLMlld:pubmed
pubmed-article:16851674pubmed:authorsCompleteYlld:pubmed
pubmed-article:16851674pubmed:pagination6121-5lld:pubmed
pubmed-article:16851674pubmed:year2005lld:pubmed
pubmed-article:16851674pubmed:articleTitleApplied magnetic field rejects the coating of ferromagnetic carbon from the surface of ferromagnetic cobalt: RAPET of CoZr2(acac)2(OiPr)8.lld:pubmed
pubmed-article:16851674pubmed:affiliationDepartment of Chemistry and Kanbar Laboratory for Nanomaterials, Bar-Ilan University Center for Advanced Materials and Nanotechnology, Ramat-Gan, 52900, Israel.lld:pubmed
pubmed-article:16851674pubmed:publicationTypeJournal Articlelld:pubmed