pubmed-article:16707203 | pubmed:abstractText | The current revision of the European policy for the evaluation of chemicals (REACH) has lead to a controversy with regard to the need of additional animal safety testing. To avoid increases in animal testing but also to save time and resources, alternative in silico or in vitro tests for the assessment of toxic effects of chemicals are advocated. The draft of the original document issued in 29th October 2003 by the European Commission foresees the use of alternative methods but does not give further specification on which methods should be used. Computer-assisted prediction models, so-called predictive tools, besides in vitro models, will likely play an essential role in the proposed repertoire of "alternative methods". The current discussion has urged the Advisory Committee of the German Toxicology Society to present its position on the use of predictive tools in toxicology. Acceptable prediction models already exist for those toxicological endpoints which are based on well-understood mechanism, such as mutagenicity and skin sensitization, whereas mechanistically more complex endpoints such as acute, chronic or organ toxicities currently cannot be satisfactorily predicted. A potential strategy to assess such complex toxicities will lie in their dissection into models for the different steps or pathways leading to the final endpoint. Integration of these models should result in a higher predictivity. Despite these limitations, computer-assisted prediction tools already today play a complementary role for the assessment of chemicals for which no data is available or for which toxicological testing is impractical due to the lack of availability of sufficient compounds for testing. Furthermore, predictive tools offer support in the screening and the subsequent prioritization of compound for further toxicological testing, as expected within the scope of the European REACH program. This program will also lead to the collection of high-quality data which will broaden the database for further (Q)SAR approaches and will in turn increase the predictivity of predictive tools. | lld:pubmed |