Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:16332425rdf:typepubmed:Citationlld:pubmed
pubmed-article:16332425lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:16332425lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:16332425lifeskim:mentionsumls-concept:C0684321lld:lifeskim
pubmed-article:16332425lifeskim:mentionsumls-concept:C0220825lld:lifeskim
pubmed-article:16332425lifeskim:mentionsumls-concept:C1519941lld:lifeskim
pubmed-article:16332425lifeskim:mentionsumls-concept:C1510438lld:lifeskim
pubmed-article:16332425lifeskim:mentionsumls-concept:C0449445lld:lifeskim
pubmed-article:16332425pubmed:issue1lld:pubmed
pubmed-article:16332425pubmed:dateCreated2006-3-20lld:pubmed
pubmed-article:16332425pubmed:abstractTextThe quality of bioanalytical data is highly dependent on using an appropriate regression model for calibration curves. Non-weighted linear regression has traditionally been used but is not necessarily the optimal model. Bioanalytical assays generally benefit from using either data transformation and/or weighting since variance normally increases with concentration. A data set with calibrators ranging from 9 to 10000 ng/mL was used to compare a new approach with the traditional approach for selecting an optimal regression model. The new approach used a combination of relative residuals at each calibration level together with precision and accuracy of independent quality control samples over 4 days to select and justify the best regression model. The results showed that log-log transformation without weighting was the simplest model to fit the calibration data and ensure good predictability for this data set.lld:pubmed
pubmed-article:16332425pubmed:granthttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16332425pubmed:languageenglld:pubmed
pubmed-article:16332425pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16332425pubmed:citationSubsetIMlld:pubmed
pubmed-article:16332425pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16332425pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16332425pubmed:statusMEDLINElld:pubmed
pubmed-article:16332425pubmed:monthAprlld:pubmed
pubmed-article:16332425pubmed:issn0731-7085lld:pubmed
pubmed-article:16332425pubmed:authorpubmed-author:AshtonMMlld:pubmed
pubmed-article:16332425pubmed:authorpubmed-author:WhiteN JNJlld:pubmed
pubmed-article:16332425pubmed:authorpubmed-author:BergqvistYYlld:pubmed
pubmed-article:16332425pubmed:authorpubmed-author:DayN P JNPlld:pubmed
pubmed-article:16332425pubmed:authorpubmed-author:AnnerbergAAlld:pubmed
pubmed-article:16332425pubmed:authorpubmed-author:SingtorojTTlld:pubmed
pubmed-article:16332425pubmed:authorpubmed-author:TarningJJlld:pubmed
pubmed-article:16332425pubmed:authorpubmed-author:LindegardhNNlld:pubmed
pubmed-article:16332425pubmed:issnTypePrintlld:pubmed
pubmed-article:16332425pubmed:day11lld:pubmed
pubmed-article:16332425pubmed:volume41lld:pubmed
pubmed-article:16332425pubmed:ownerNLMlld:pubmed
pubmed-article:16332425pubmed:authorsCompleteYlld:pubmed
pubmed-article:16332425pubmed:pagination219-27lld:pubmed
pubmed-article:16332425pubmed:dateRevised2009-11-19lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:meshHeadingpubmed-meshheading:16332425...lld:pubmed
pubmed-article:16332425pubmed:year2006lld:pubmed
pubmed-article:16332425pubmed:articleTitleA new approach to evaluate regression models during validation of bioanalytical assays.lld:pubmed
pubmed-article:16332425pubmed:affiliationFaculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.lld:pubmed
pubmed-article:16332425pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:16332425pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16332425lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:16332425lld:pubmed