Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:16089622rdf:typepubmed:Citationlld:pubmed
pubmed-article:16089622lifeskim:mentionsumls-concept:C0728724lld:lifeskim
pubmed-article:16089622lifeskim:mentionsumls-concept:C0026339lld:lifeskim
pubmed-article:16089622lifeskim:mentionsumls-concept:C0026336lld:lifeskim
pubmed-article:16089622lifeskim:mentionsumls-concept:C0205384lld:lifeskim
pubmed-article:16089622lifeskim:mentionsumls-concept:C1444748lld:lifeskim
pubmed-article:16089622lifeskim:mentionsumls-concept:C1704711lld:lifeskim
pubmed-article:16089622lifeskim:mentionsumls-concept:C0443228lld:lifeskim
pubmed-article:16089622lifeskim:mentionsumls-concept:C0871935lld:lifeskim
pubmed-article:16089622lifeskim:mentionsumls-concept:C0175671lld:lifeskim
pubmed-article:16089622pubmed:issue5 Pt 2lld:pubmed
pubmed-article:16089622pubmed:dateCreated2005-8-10lld:pubmed
pubmed-article:16089622pubmed:abstractTextUsing the epidemic-type aftershock sequence (ETAS) branching model of triggered seismicity, we apply the formalism of generating probability functions to calculate exactly the average difference between the magnitude of a mainshock and the magnitude of its largest aftershock over all generations. This average magnitude difference is found empirically to be independent of the mainshock magnitude and equal to 1.2, a universal behavior known as Båth's law. Our theory shows that Båth's law holds only sufficiently close to the critical regime of the ETAS branching process. Allowing for error bars +/- 0.1 for Båth's constant value around 1.2, our exact analytical treatment of Båth's law provides new constraints on the productivity exponent alpha and the branching ratio n: 0.9 approximately < alpha < or =1. We propose a method for measuring alpha based on the predicted renormalization of the Gutenberg-Richter distribution of the magnitudes of the largest aftershock. We also introduce the "second Båth law for foreshocks:" the probability that a main earthquake turns out to be the foreshock does not depend on its magnitude rho.lld:pubmed
pubmed-article:16089622pubmed:languageenglld:pubmed
pubmed-article:16089622pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:16089622pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:16089622pubmed:monthMaylld:pubmed
pubmed-article:16089622pubmed:issn1539-3755lld:pubmed
pubmed-article:16089622pubmed:authorpubmed-author:SornetteDDlld:pubmed
pubmed-article:16089622pubmed:authorpubmed-author:SaichevAAlld:pubmed
pubmed-article:16089622pubmed:issnTypePrintlld:pubmed
pubmed-article:16089622pubmed:volume71lld:pubmed
pubmed-article:16089622pubmed:ownerNLMlld:pubmed
pubmed-article:16089622pubmed:authorsCompleteYlld:pubmed
pubmed-article:16089622pubmed:pagination056127lld:pubmed
pubmed-article:16089622pubmed:year2005lld:pubmed
pubmed-article:16089622pubmed:articleTitleDistribution of the largest aftershocks in branching models of triggered seismicity: theory of the universal Båth law.lld:pubmed
pubmed-article:16089622pubmed:affiliationMathematical Department, Nizhny Novgorod State University, Gagarin prosp. 23, Nizhny Novgorod 603950, Russia.lld:pubmed
pubmed-article:16089622pubmed:publicationTypeJournal Articlelld:pubmed