pubmed-article:16018815 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:16018815 | lifeskim:mentions | umls-concept:C0525063 | lld:lifeskim |
pubmed-article:16018815 | lifeskim:mentions | umls-concept:C0012652 | lld:lifeskim |
pubmed-article:16018815 | lifeskim:mentions | umls-concept:C0733511 | lld:lifeskim |
pubmed-article:16018815 | lifeskim:mentions | umls-concept:C0220888 | lld:lifeskim |
pubmed-article:16018815 | lifeskim:mentions | umls-concept:C0037589 | lld:lifeskim |
pubmed-article:16018815 | pubmed:dateCreated | 2005-8-4 | lld:pubmed |
pubmed-article:16018815 | pubmed:abstractText | Evaluating surveillance systems for the early detection of bioterrorism is particularly challenging when systems are designed to detect events for which there are few or no historical examples. One approach to benchmarking outbreak detection performance is to create semi-synthetic datasets containing authentic baseline patient data (noise) and injected artificial patient clusters, as signal. | lld:pubmed |
pubmed-article:16018815 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:language | eng | lld:pubmed |
pubmed-article:16018815 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16018815 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:16018815 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:16018815 | pubmed:issn | 1472-6947 | lld:pubmed |
pubmed-article:16018815 | pubmed:author | pubmed-author:MandlKenneth... | lld:pubmed |
pubmed-article:16018815 | pubmed:author | pubmed-author:OlsonKaren... | lld:pubmed |
pubmed-article:16018815 | pubmed:author | pubmed-author:CassaChristop... | lld:pubmed |
pubmed-article:16018815 | pubmed:author | pubmed-author:IancuKarinK | lld:pubmed |
pubmed-article:16018815 | pubmed:issnType | Electronic | lld:pubmed |
pubmed-article:16018815 | pubmed:volume | 5 | lld:pubmed |
pubmed-article:16018815 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:16018815 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:16018815 | pubmed:pagination | 22 | lld:pubmed |
pubmed-article:16018815 | pubmed:dateRevised | 2009-11-18 | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:meshHeading | pubmed-meshheading:16018815... | lld:pubmed |
pubmed-article:16018815 | pubmed:year | 2005 | lld:pubmed |
pubmed-article:16018815 | pubmed:articleTitle | A software tool for creating simulated outbreaks to benchmark surveillance systems. | lld:pubmed |
pubmed-article:16018815 | pubmed:affiliation | Children's Hospital Informatics Program, Children's Hospital Boston, Boston, MA 02115, USA. cassa@mit.edu | lld:pubmed |
pubmed-article:16018815 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:16018815 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |
pubmed-article:16018815 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |
pubmed-article:16018815 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16018815 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16018815 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16018815 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16018815 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16018815 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16018815 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:16018815 | lld:pubmed |