pubmed-article:16003583 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:16003583 | lifeskim:mentions | umls-concept:C0003818 | lld:lifeskim |
pubmed-article:16003583 | lifeskim:mentions | umls-concept:C0599840 | lld:lifeskim |
pubmed-article:16003583 | lifeskim:mentions | umls-concept:C0007009 | lld:lifeskim |
pubmed-article:16003583 | lifeskim:mentions | umls-concept:C1550099 | lld:lifeskim |
pubmed-article:16003583 | lifeskim:mentions | umls-concept:C0680727 | lld:lifeskim |
pubmed-article:16003583 | lifeskim:mentions | umls-concept:C1280500 | lld:lifeskim |
pubmed-article:16003583 | lifeskim:mentions | umls-concept:C0449416 | lld:lifeskim |
pubmed-article:16003583 | pubmed:issue | 2 | lld:pubmed |
pubmed-article:16003583 | pubmed:dateCreated | 2005-7-8 | lld:pubmed |
pubmed-article:16003583 | pubmed:abstractText | Changes in speciation and mobility of As by indigenous bacteria in As-contaminated sediments (339 mg/kg) from an abandoned Au-Ag mine area in Korea were investigated after biostimulation with a variety of carbon sources, including acetate, lactate and glucose in batch experiments. Sequential extraction analysis designed to determine the form of As occurrence revealed that 40 and 47% of As were present in the sediment as Fe-associated and residual fractions, respectively. After 22-day incubation with acetate and lactate, the presence of indigenous bacteria increased the amount of total dissolved As from both Fe-associated and residual fractions in the sediment. More than 99% of dissolved As existed as As(V) in biotic slurries in contrast to sterile controls (less than 50% of total dissolved As), which indicated that indigenous bacteria transformed some dissolved As(III) to As(V). In real environments, depending on the pH, microbially-produced aqueous As(V) may be either immobilized through adsorption or reduced to As(III) after migration to the anoxic subsurface. | lld:pubmed |
pubmed-article:16003583 | pubmed:language | eng | lld:pubmed |
pubmed-article:16003583 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16003583 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:16003583 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16003583 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16003583 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16003583 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16003583 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16003583 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:16003583 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:16003583 | pubmed:month | Apr | lld:pubmed |
pubmed-article:16003583 | pubmed:issn | 0269-4042 | lld:pubmed |
pubmed-article:16003583 | pubmed:author | pubmed-author:LeeSang-WooSW | lld:pubmed |
pubmed-article:16003583 | pubmed:author | pubmed-author:KimKyoung-Woo... | lld:pubmed |
pubmed-article:16003583 | pubmed:author | pubmed-author:LeeJong-UnJU | lld:pubmed |
pubmed-article:16003583 | pubmed:author | pubmed-author:YoonChung-Han... | lld:pubmed |
pubmed-article:16003583 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:16003583 | pubmed:volume | 27 | lld:pubmed |
pubmed-article:16003583 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:16003583 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:16003583 | pubmed:pagination | 159-68 | lld:pubmed |
pubmed-article:16003583 | pubmed:dateRevised | 2006-11-15 | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:meshHeading | pubmed-meshheading:16003583... | lld:pubmed |
pubmed-article:16003583 | pubmed:year | 2005 | lld:pubmed |
pubmed-article:16003583 | pubmed:articleTitle | The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. | lld:pubmed |
pubmed-article:16003583 | pubmed:affiliation | Department of Civil, Geosystem and Environmental Engineering, Chonnam National University, Gwangju 500-757, Korea. jongun@chonnam.ac.kr | lld:pubmed |
pubmed-article:16003583 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:16003583 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |