Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15927598rdf:typepubmed:Citationlld:pubmed
pubmed-article:15927598lifeskim:mentionsumls-concept:C0031603lld:lifeskim
pubmed-article:15927598lifeskim:mentionsumls-concept:C0038891lld:lifeskim
pubmed-article:15927598lifeskim:mentionsumls-concept:C1257888lld:lifeskim
pubmed-article:15927598lifeskim:mentionsumls-concept:C0872351lld:lifeskim
pubmed-article:15927598lifeskim:mentionsumls-concept:C0585064lld:lifeskim
pubmed-article:15927598pubmed:issue2lld:pubmed
pubmed-article:15927598pubmed:dateCreated2005-6-1lld:pubmed
pubmed-article:15927598pubmed:abstractTextWe present the adsorption kinetics and the surface phase behavior of water-soluble n-tetradecyl phosphate (n-TDP) at the air-water interface by film balance and Brewster angle microscopy (BAM). The relaxation of the surface pressure at about zero value in the surface pressure (pi)-time (t) adsorption isotherm is found to occur from 2 to 20 degrees C with appropriate concentrations of the amphiphile. These plateaus are accompanied by two surface phases, confirming that the relaxation of the surface pressure is caused by a first-order phase transition. Only this phase transition is observed at <6.5 degrees C and it is considered as a gas (G)-liquid condensed (LC) phase transition. Above 6.5 degrees C, the phase transition at zero surface pressure is followed by another phase transition, which is indicated by the presence of cusp points in the pi-t curves at different temperatures. Each of the cusp points is followed by a plateau, which is accompanied by two surface phases, indicating that the latter transitions are also first-order in nature. At >6.5 degrees C, the former transition is classified as a first-order G-liquid expanded (LE) phase transition, while the latter transition is grouped into a first-order LE-LC phase transition. The critical surface pressure (pi(c)) necessary for the G-LC and G-LE phase transitions is zero and remains constant all over the studied temperatures, whereas that for the LE-LC transition increases linearly with increasing temperature. Based on these results, we construct a rather elaborated phase diagram that shows that the triple point for Gibbs monolayers of n-TDP is 6.5 degrees C. All the results are consistent with the present understanding of the Langmuir monolayers of insoluble amphiphiles at the air-water interface.lld:pubmed
pubmed-article:15927598pubmed:languageenglld:pubmed
pubmed-article:15927598pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15927598pubmed:citationSubsetIMlld:pubmed
pubmed-article:15927598pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15927598pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15927598pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15927598pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15927598pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15927598pubmed:statusMEDLINElld:pubmed
pubmed-article:15927598pubmed:monthAuglld:pubmed
pubmed-article:15927598pubmed:issn0021-9797lld:pubmed
pubmed-article:15927598pubmed:authorpubmed-author:SuzukiToshiyu...lld:pubmed
pubmed-article:15927598pubmed:authorpubmed-author:KatoTeijiTlld:pubmed
pubmed-article:15927598pubmed:authorpubmed-author:HossainMd...lld:pubmed
pubmed-article:15927598pubmed:issnTypePrintlld:pubmed
pubmed-article:15927598pubmed:day15lld:pubmed
pubmed-article:15927598pubmed:volume288lld:pubmed
pubmed-article:15927598pubmed:ownerNLMlld:pubmed
pubmed-article:15927598pubmed:authorsCompleteYlld:pubmed
pubmed-article:15927598pubmed:pagination342-9lld:pubmed
pubmed-article:15927598pubmed:dateRevised2009-11-11lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:meshHeadingpubmed-meshheading:15927598...lld:pubmed
pubmed-article:15927598pubmed:year2005lld:pubmed
pubmed-article:15927598pubmed:articleTitlePhases and phase transitions in Gibbs monolayers of an alkyl phosphate surfactant.lld:pubmed
pubmed-article:15927598pubmed:affiliationVenture Business Laboratory, Utsunomiya University, Yoto 7-1-2, Utsunomiya 321-8585, Japan.lld:pubmed
pubmed-article:15927598pubmed:publicationTypeJournal Articlelld:pubmed
pubmed-article:15927598pubmed:publicationTypeResearch Support, Non-U.S. Gov'tlld:pubmed