Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:15876091rdf:typepubmed:Citationlld:pubmed
pubmed-article:15876091lifeskim:mentionsumls-concept:C0439849lld:lifeskim
pubmed-article:15876091lifeskim:mentionsumls-concept:C0022262lld:lifeskim
pubmed-article:15876091lifeskim:mentionsumls-concept:C0443286lld:lifeskim
pubmed-article:15876091lifeskim:mentionsumls-concept:C1280500lld:lifeskim
pubmed-article:15876091lifeskim:mentionsumls-concept:C1261322lld:lifeskim
pubmed-article:15876091lifeskim:mentionsumls-concept:C0678594lld:lifeskim
pubmed-article:15876091lifeskim:mentionsumls-concept:C0871935lld:lifeskim
pubmed-article:15876091pubmed:issue10lld:pubmed
pubmed-article:15876091pubmed:dateCreated2005-5-6lld:pubmed
pubmed-article:15876091pubmed:abstractText[reaction: see text] The transition structures and alpha-carbon 12C/13C kinetic isotope effects for 22 S(N)2 reactions between methyl chloride and a wide variety of nucleophiles have been calculated using the B1LYP/aug-cc-pVDZ level of theory. Anionic, neutral, and radical anion nucleophiles were used to give a wide range of S(N)2 transition states so the relationship between the magnitude of the alpha-carbon kinetic isotope effect and transition-state structure could be determined. The results suggest that the alpha-carbon 12C/13C kinetic isotope effects for S(N)2 reactions will be large (near the experimental maximum) and that the curve relating the magnitude of the KIE to the percent transfer of the alpha-carbon from the nucleophile to the leaving group in the transition state has a broad maximum. This means very similar KIEs will be found for early, symmetric, and late transition states and that one cannot use the magnitude of these KIEs to estimate transition-state structure.lld:pubmed
pubmed-article:15876091pubmed:languageenglld:pubmed
pubmed-article:15876091pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:15876091pubmed:statusPubMed-not-MEDLINElld:pubmed
pubmed-article:15876091pubmed:monthMaylld:pubmed
pubmed-article:15876091pubmed:issn0022-3263lld:pubmed
pubmed-article:15876091pubmed:authorpubmed-author:MatssonOOlld:pubmed
pubmed-article:15876091pubmed:authorpubmed-author:PanethPPlld:pubmed
pubmed-article:15876091pubmed:authorpubmed-author:Dybala-Defrat...lld:pubmed
pubmed-article:15876091pubmed:authorpubmed-author:RostkowskiMMlld:pubmed
pubmed-article:15876091pubmed:authorpubmed-author:WestawayK CKClld:pubmed
pubmed-article:15876091pubmed:issnTypePrintlld:pubmed
pubmed-article:15876091pubmed:day13lld:pubmed
pubmed-article:15876091pubmed:volume70lld:pubmed
pubmed-article:15876091pubmed:ownerNLMlld:pubmed
pubmed-article:15876091pubmed:authorsCompleteYlld:pubmed
pubmed-article:15876091pubmed:pagination4022-7lld:pubmed
pubmed-article:15876091pubmed:year2005lld:pubmed
pubmed-article:15876091pubmed:articleTitleA theoretical investigation of alpha-carbon kinetic isotope effects and their relationship to the transition-state structure of S(N)2 reactions.lld:pubmed
pubmed-article:15876091pubmed:affiliationDivision of Organic Chemistry, Department of Chemistry, Uppsala University, P.O. Box 599, 75124 Uppsala, Sweden. ollem@kemi.uu.selld:pubmed
pubmed-article:15876091pubmed:publicationTypeJournal Articlelld:pubmed