pubmed-article:15875819 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:15875819 | lifeskim:mentions | umls-concept:C0027950 | lld:lifeskim |
pubmed-article:15875819 | lifeskim:mentions | umls-concept:C0033684 | lld:lifeskim |
pubmed-article:15875819 | lifeskim:mentions | umls-concept:C0015083 | lld:lifeskim |
pubmed-article:15875819 | lifeskim:mentions | umls-concept:C2697585 | lld:lifeskim |
pubmed-article:15875819 | pubmed:issue | 8 | lld:pubmed |
pubmed-article:15875819 | pubmed:dateCreated | 2005-5-6 | lld:pubmed |
pubmed-article:15875819 | pubmed:abstractText | In this study, robotic protein printing was employed as a method for designing a cellular microenvironment. Protein printing proved to be an effective strategy for creating micropatterned co-cultures of primary rat hepatocytes and 3T3 fibroblasts. Collagen spots (ca. 170 microm in diameter) were printed onto amino-silane- and glutaraldehyde-modified glass slides. Groups of 15-20 hepatocytes attached to collagen regions in a highly selective manner forming cell clusters corresponding in size to the printed collagen domains. Fibroblasts, seeded onto the same surface, adhered and spread around arrays of hepatocyte islands creating a heterotypic environment. The co-cultured hepatocytes produced and maintained high levels of liver-specific biomarkers, albumin and urea, over the course of 2 weeks. In addition, protein printing was combined with poly(ethylene glycol) photolithography to define intercellular contacts within the clusters of hepatocytes residing on individual collagen islands. Glass slides, treated with 3-acryloxypropyl trichlorosilane and imprinted with 170 m diameter collagen spots, were micropatterned with a high-density array of 30 microm x 30 microm poly(ethylene glycol) (PEG) wells. As a result, discrete groups of ca. 9 PEG microwells became functionalized with the cell-adhesive ligand. When exposed to micropatterned surfaces, hepatocytes interacted exclusively with collagen-modified regions, attaching and becoming confined at a single-cell level within the hydrogel wells. Micropatterning strategies proposed here will lead to greater insights into hepatocellular behavior and will benefit the fields of hepatic tissue engineering and liver biology. | lld:pubmed |
pubmed-article:15875819 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15875819 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15875819 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15875819 | pubmed:language | eng | lld:pubmed |
pubmed-article:15875819 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15875819 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:15875819 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15875819 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:15875819 | pubmed:month | Apr | lld:pubmed |
pubmed-article:15875819 | pubmed:issn | 0743-7463 | lld:pubmed |
pubmed-article:15875819 | pubmed:author | pubmed-author:YarmushMartin... | lld:pubmed |
pubmed-article:15875819 | pubmed:author | pubmed-author:TonerMehmetM | lld:pubmed |
pubmed-article:15875819 | pubmed:author | pubmed-author:BerthiaumeFra... | lld:pubmed |
pubmed-article:15875819 | pubmed:author | pubmed-author:RevzinAlexand... | lld:pubmed |
pubmed-article:15875819 | pubmed:author | pubmed-author:TillesArno... | lld:pubmed |
pubmed-article:15875819 | pubmed:author | pubmed-author:RajagopalanPa... | lld:pubmed |
pubmed-article:15875819 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:15875819 | pubmed:day | 13 | lld:pubmed |
pubmed-article:15875819 | pubmed:volume | 20 | lld:pubmed |
pubmed-article:15875819 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:15875819 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:15875819 | pubmed:pagination | 2999-3005 | lld:pubmed |
pubmed-article:15875819 | pubmed:dateRevised | 2007-11-14 | lld:pubmed |
pubmed-article:15875819 | pubmed:meshHeading | pubmed-meshheading:15875819... | lld:pubmed |
pubmed-article:15875819 | pubmed:meshHeading | pubmed-meshheading:15875819... | lld:pubmed |
pubmed-article:15875819 | pubmed:meshHeading | pubmed-meshheading:15875819... | lld:pubmed |
pubmed-article:15875819 | pubmed:meshHeading | pubmed-meshheading:15875819... | lld:pubmed |
pubmed-article:15875819 | pubmed:meshHeading | pubmed-meshheading:15875819... | lld:pubmed |
pubmed-article:15875819 | pubmed:meshHeading | pubmed-meshheading:15875819... | lld:pubmed |
pubmed-article:15875819 | pubmed:meshHeading | pubmed-meshheading:15875819... | lld:pubmed |
pubmed-article:15875819 | pubmed:meshHeading | pubmed-meshheading:15875819... | lld:pubmed |
pubmed-article:15875819 | pubmed:year | 2004 | lld:pubmed |
pubmed-article:15875819 | pubmed:articleTitle | Designing a hepatocellular microenvironment with protein microarraying and poly(ethylene glycol) photolithography. | lld:pubmed |
pubmed-article:15875819 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:15875819 | pubmed:publicationType | Research Support, N.I.H., Extramural | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15875819 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15875819 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15875819 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15875819 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15875819 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15875819 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15875819 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15875819 | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15875819 | lld:pubmed |