Source:http://linkedlifedata.com/resource/pubmed/id/15739891
Subject | Predicate | Object | Context |
---|---|---|---|
pubmed-article:15739891 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:15739891 | lifeskim:mentions | umls-concept:C1280500 | lld:lifeskim |
pubmed-article:15739891 | lifeskim:mentions | umls-concept:C0040756 | lld:lifeskim |
pubmed-article:15739891 | lifeskim:mentions | umls-concept:C0018851 | lld:lifeskim |
pubmed-article:15739891 | lifeskim:mentions | umls-concept:C0201699 | lld:lifeskim |
pubmed-article:15739891 | lifeskim:mentions | umls-concept:C2603343 | lld:lifeskim |
pubmed-article:15739891 | lifeskim:mentions | umls-concept:C0936012 | lld:lifeskim |
pubmed-article:15739891 | lifeskim:mentions | umls-concept:C0439256 | lld:lifeskim |
pubmed-article:15739891 | pubmed:issue | 2 | lld:pubmed |
pubmed-article:15739891 | pubmed:dateCreated | 2005-3-2 | lld:pubmed |
pubmed-article:15739891 | pubmed:abstractText | Electric fields are often used to transport fluids (by electroosmosis) and separate charged samples (by electrophoresis) in microfluidic devices. However, there exists inevitable Joule heating when electric currents are passing through electrolyte solutions. Joule heating not only increases the fluid temperature, but also produces temperature gradients in cross-stream and axial directions. These temperature effects make fluid properties non-uniform, and hence alter the applied electric potential field and the flow field. The mass species transport is also influenced. In this paper we develop an analytical model to study Joule heating effects on the transport of heat, electricity, momentum and mass species in capillary-based electrophoresis. Close-form formulae are derived for the temperature, applied electrical potential, velocity, and pressure fields at steady state, and the transient concentration field as well. Also available are the compact formulae for the electric current and the volume flow rate through the capillary. It is shown that, due to the thermal end effect, sharp temperature drops appear close to capillary ends, where sharp rises of electric field are required to meet the current continuity. In order to satisfy the mass continuity, pressure gradients have to be induced along the capillary. The resultant curved fluid velocity profile and the increase of molecular diffusion both contribute to the dispersion of samples. However, Joule heating effects enhance the sample transport velocity, reducing the analysis time in capillary electrophoretic separations. | lld:pubmed |
pubmed-article:15739891 | pubmed:language | eng | lld:pubmed |
pubmed-article:15739891 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15739891 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:15739891 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:15739891 | pubmed:month | Feb | lld:pubmed |
pubmed-article:15739891 | pubmed:issn | 0021-9673 | lld:pubmed |
pubmed-article:15739891 | pubmed:author | pubmed-author:LiDongqingD | lld:pubmed |
pubmed-article:15739891 | pubmed:author | pubmed-author:XuanXiangchun... | lld:pubmed |
pubmed-article:15739891 | pubmed:issnType | lld:pubmed | |
pubmed-article:15739891 | pubmed:day | 4 | lld:pubmed |
pubmed-article:15739891 | pubmed:volume | 1064 | lld:pubmed |
pubmed-article:15739891 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:15739891 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:15739891 | pubmed:pagination | 227-37 | lld:pubmed |
pubmed-article:15739891 | pubmed:dateRevised | 2009-1-15 | lld:pubmed |
pubmed-article:15739891 | pubmed:meshHeading | pubmed-meshheading:15739891... | lld:pubmed |
pubmed-article:15739891 | pubmed:meshHeading | pubmed-meshheading:15739891... | lld:pubmed |
pubmed-article:15739891 | pubmed:year | 2005 | lld:pubmed |
pubmed-article:15739891 | pubmed:articleTitle | Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis. | lld:pubmed |
pubmed-article:15739891 | pubmed:affiliation | Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ont., Canada. | lld:pubmed |
pubmed-article:15739891 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:15739891 | pubmed:publicationType | Research Support, Non-U.S. Gov't | lld:pubmed |