Statements in which the resource exists.
SubjectPredicateObjectContext
pubmed-article:1558838rdf:typepubmed:Citationlld:pubmed
pubmed-article:1558838lifeskim:mentionsumls-concept:C0086418lld:lifeskim
pubmed-article:1558838lifeskim:mentionsumls-concept:C0034721lld:lifeskim
pubmed-article:1558838lifeskim:mentionsumls-concept:C0034693lld:lifeskim
pubmed-article:1558838lifeskim:mentionsumls-concept:C0003593lld:lifeskim
pubmed-article:1558838lifeskim:mentionsumls-concept:C1527148lld:lifeskim
pubmed-article:1558838lifeskim:mentionsumls-concept:C2243194lld:lifeskim
pubmed-article:1558838lifeskim:mentionsumls-concept:C0851285lld:lifeskim
pubmed-article:1558838lifeskim:mentionsumls-concept:C1515655lld:lifeskim
pubmed-article:1558838pubmed:issue4lld:pubmed
pubmed-article:1558838pubmed:dateCreated1992-5-14lld:pubmed
pubmed-article:1558838pubmed:abstractTextThe solubilization and delivery of lipids in plasma rely on both forms of apolipoprotein B (apo B): apo B-100 and apo B-48. Apo B-48 is the translational product of apo B-100 mRNA that undergoes peritranscriptional conversion of C----U, replacing codon CAA (glutamine 2,153) with the inframe stop codon (UAA). We examined mRNA editing activity in the human and the rat by reverse transcription-polymerase chain reaction primer-extension analysis of intestine and liver total RNA. In rat intestine the percentage of apo B transcripts that undergo editing increases dramatically the day before birth (from approximately 1% to 80%), whereas the rat liver acquires an adult level of editing activity during the third postnatal week (rising from approximately 8% to 30%), when weaning is completed, bile acid composition matures, and plasma thyroid hormone levels peak. In contrast to the rat, the human intestine acquires adult levels of apo B mRNA editing relatively early in fetal development, rising from 10% at 10 weeks to approximately 80% by the end of the second trimester. Our results establish that apo B mRNA editing is 1) developmentally regulated in a tissue- and species-specific manner; 2) fully developed prenatally in both human and rat intestine, suggesting a crucial role of apo B-48 in mammalian fetal adaptation to extrauterine life; and 3) acquired early in human fetal intestine, implying a potential role for apo B-48 in prenatal lipid metabolism.lld:pubmed
pubmed-article:1558838pubmed:languageenglld:pubmed
pubmed-article:1558838pubmed:journalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:1558838pubmed:citationSubsetIMlld:pubmed
pubmed-article:1558838pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:1558838pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:1558838pubmed:chemicalhttp://linkedlifedata.com/r...lld:pubmed
pubmed-article:1558838pubmed:statusMEDLINElld:pubmed
pubmed-article:1558838pubmed:monthAprlld:pubmed
pubmed-article:1558838pubmed:issn1049-8834lld:pubmed
pubmed-article:1558838pubmed:authorpubmed-author:BrewerH BHBJrlld:pubmed
pubmed-article:1558838pubmed:authorpubmed-author:HoegJ MJMlld:pubmed
pubmed-article:1558838pubmed:authorpubmed-author:SviridovD DDDlld:pubmed
pubmed-article:1558838pubmed:authorpubmed-author:PattersonA...lld:pubmed
pubmed-article:1558838pubmed:authorpubmed-author:TennysonG EGElld:pubmed
pubmed-article:1558838pubmed:issnTypePrintlld:pubmed
pubmed-article:1558838pubmed:volume12lld:pubmed
pubmed-article:1558838pubmed:ownerNLMlld:pubmed
pubmed-article:1558838pubmed:authorsCompleteYlld:pubmed
pubmed-article:1558838pubmed:pagination468-73lld:pubmed
pubmed-article:1558838pubmed:dateRevised2006-11-15lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:meshHeadingpubmed-meshheading:1558838-...lld:pubmed
pubmed-article:1558838pubmed:year1992lld:pubmed
pubmed-article:1558838pubmed:articleTitleOntogenetic regulation of apolipoprotein B mRNA editing during human and rat development in vivo.lld:pubmed
pubmed-article:1558838pubmed:affiliationMolecular Disease Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892.lld:pubmed
pubmed-article:1558838pubmed:publicationTypeJournal Articlelld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:1558838lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:1558838lld:pubmed
http://linkedlifedata.com/r...pubmed:referesTopubmed-article:1558838lld:pubmed