pubmed-article:15564284 | rdf:type | pubmed:Citation | lld:pubmed |
pubmed-article:15564284 | lifeskim:mentions | umls-concept:C1135183 | lld:lifeskim |
pubmed-article:15564284 | lifeskim:mentions | umls-concept:C0205042 | lld:lifeskim |
pubmed-article:15564284 | lifeskim:mentions | umls-concept:C0042401 | lld:lifeskim |
pubmed-article:15564284 | lifeskim:mentions | umls-concept:C0242184 | lld:lifeskim |
pubmed-article:15564284 | lifeskim:mentions | umls-concept:C0085862 | lld:lifeskim |
pubmed-article:15564284 | lifeskim:mentions | umls-concept:C1299583 | lld:lifeskim |
pubmed-article:15564284 | lifeskim:mentions | umls-concept:C0596235 | lld:lifeskim |
pubmed-article:15564284 | lifeskim:mentions | umls-concept:C1608386 | lld:lifeskim |
pubmed-article:15564284 | lifeskim:mentions | umls-concept:C1549571 | lld:lifeskim |
pubmed-article:15564284 | pubmed:issue | Pt 3 | lld:pubmed |
pubmed-article:15564284 | pubmed:dateCreated | 2005-1-27 | lld:pubmed |
pubmed-article:15564284 | pubmed:abstractText | To demonstrate a Ca(2+)-independent component of hypoxic vasorelaxation and to investigate its mechanism, we utilized permeabilized porcine coronary arteries, in which [Ca(2+)] could be clamped. Arteries permeabilized with beta-escin developed maximum force in response to free Ca(2+) (6.6 microm), concomitant with a parallel increase in myosin regulatory light chain phosphorylation (MRLC-P(i)), from 0.183 +/- 0.023 to 0.353 +/- 0.019 MRLC-P(i) (total light chain)(-1). Hypoxia resulted in a significant decrease in both force (-31.9 +/- 4.1% prior developed force) and MRLC-P(i) (from 0.353 to 0.280 +/- 0.023), despite constant [Ca(2+)] buffered by EGTA (4 mm). Forces developed in response to Ca(2+) (6.6 microm), Ca(2+) (0.2 microm) + GTPgammaS (1 mM), or in the absence of Ca(2+) after treatment with ATPgammaS (1 mM), were of similar magnitude. Hypoxia also relaxed GTPgammaS contractures but importantly, arteries could not be relaxed after treatment with ATPgammaS. Permeabilization with Triton X-100 for 60 min also abolished hypoxic relaxation. The blocking of hypoxic relaxation after ATPgammaS suggests that this Ca(2+)-independent mechanism(s) may operate through alteration of MRLC-P(i) or of phosphorylation of the myosin binding subunit of myosin light chain phosphatase. Treatment with the Rho kinase inhibitor Y27632 (1 microm) relaxed GTPgammaS and Ca(2+) contractures; but the latter required a higher concentration (10 microm) for consistent relaxation. Relaxations to N(2) and/or Y27632 averaged 35% and were not additive or dependent on order. Our data suggest that the GTP-mediated, Rho kinase-coupled pathway merits further investigation as a potential site of this novel, Ca(2+)-independent O(2)-sensing mechanism. Importantly, these results unambiguously show that hypoxia-induced vasorelaxation can occur in permeabilized arteries where the Ca(2+) is clamped at a constant value. | lld:pubmed |
pubmed-article:15564284 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:grant | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:commentsCorrections | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:language | eng | lld:pubmed |
pubmed-article:15564284 | pubmed:journal | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:citationSubset | IM | lld:pubmed |
pubmed-article:15564284 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:chemical | http://linkedlifedata.com/r... | lld:pubmed |
pubmed-article:15564284 | pubmed:status | MEDLINE | lld:pubmed |
pubmed-article:15564284 | pubmed:month | Feb | lld:pubmed |
pubmed-article:15564284 | pubmed:issn | 0022-3751 | lld:pubmed |
pubmed-article:15564284 | pubmed:author | pubmed-author:KouMM | lld:pubmed |
pubmed-article:15564284 | pubmed:author | pubmed-author:IshidaYukisat... | lld:pubmed |
pubmed-article:15564284 | pubmed:author | pubmed-author:ThorneGeorge... | lld:pubmed |
pubmed-article:15564284 | pubmed:author | pubmed-author:PaulRichard... | lld:pubmed |
pubmed-article:15564284 | pubmed:author | pubmed-author:WardleRobert... | lld:pubmed |
pubmed-article:15564284 | pubmed:issnType | Print | lld:pubmed |
pubmed-article:15564284 | pubmed:day | 1 | lld:pubmed |
pubmed-article:15564284 | pubmed:volume | 562 | lld:pubmed |
pubmed-article:15564284 | pubmed:owner | NLM | lld:pubmed |
pubmed-article:15564284 | pubmed:authorsComplete | Y | lld:pubmed |
pubmed-article:15564284 | pubmed:pagination | 839-46 | lld:pubmed |
pubmed-article:15564284 | pubmed:dateRevised | 2009-11-18 | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:meshHeading | pubmed-meshheading:15564284... | lld:pubmed |
pubmed-article:15564284 | pubmed:year | 2005 | lld:pubmed |
pubmed-article:15564284 | pubmed:articleTitle | Ca2+-independent hypoxic vasorelaxation in porcine coronary artery. | lld:pubmed |
pubmed-article:15564284 | pubmed:affiliation | Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0576, USA. | lld:pubmed |
pubmed-article:15564284 | pubmed:publicationType | Journal Article | lld:pubmed |
pubmed-article:15564284 | pubmed:publicationType | In Vitro | lld:pubmed |
pubmed-article:15564284 | pubmed:publicationType | Research Support, U.S. Gov't, P.H.S. | lld:pubmed |
http://linkedlifedata.com/r... | pubmed:referesTo | pubmed-article:15564284 | lld:pubmed |